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0 Introduction to Business Statistics with Excel and JASP

Files needed:

JASP-0.8.6-Setup.exe

chapter0.xIsx [Excel file]

chapter0.csv [comma-separated-values text file]

0.1 Introduction to Business Statistics

Modern organizations make use of lots of data. While some have a strong belief in the information
contained in data sets, others tend to shy away from numbers and rely on intuition. In the era of Big Data,
the divide between these two groups is fading.

Ina 2012 article in the Financial Times, Steve Jones referred to Big Data as the fourth factor of production,
next to the traditional three factors (land, labor and capital), and in doing so hinted at the end of this
divide:

“As the prevalence of Big Data grows, executives are becomingly increasingly wedded to numerical insight.
But the beauty of Big Data is that it allows both intuitive and analytical thinkers to excel. More
entrepreneurially minded, creative leaders can find unexpected patterns among disparate data sources
(which might appeal to their intuitive nature) and ultimately use the information to alter the course of the
business.”

Steve Jones, Financial Times, December 2012 *

Regardless of the extent to which you believe in the power of data, data is a fact of life to managers. In
order to make better decisions and communicate clearly, it is essential for managers to be able to extract
information from data. Even though extracting information from data is often left to specialists, a basic
understanding of statistics is a requirement for managers at all levels.

This module is about basic business statistics. The adjective “basic” does not imply that it’s easy! Mastering
the basics is a prerequisite for proceeding into more advanced statistics. But here, we will stick to the
basics.

The field of statistics can be broken down into two parts, broadly speaking.

The easier part is descriptive statistics. Here, the challenge is in summarizing a large amount of data. For
example, in your studies you get grades for the various modules that make up the curriculum of your
studies. After finishing all modules, you have grades (say, scores between 0 and 100) that you can briefly
summarize using an average score; the minimum and the maximum of your scores; the number of scores
above the passing level of 60; and so on.

In inferential statistics, we assume that the data at hand are sampled from some bigger population. For
example, in a survey we can ask a sample of consumers to rate our product. Apart from describing the

1 See https://www.ft.com/content/5086d700-504a-11e2-9b66-00144feab49a, last accessed on 14 July 2018
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mean rating of the sample, our interest is in using the sample results to make a statement about the
population of all consumers.

We can go one step further, and raise the question how likely it is that consumers prefer our product
(defined by, for example, giving a score of at least 4 on a 5-point scale) given our sample outcome. We are
then “testing hypotheses” based on samples, and that’s where statistics gets tough!

Our aim is to provide you with an intuitive understanding, just enough to deal with the vast majority of
real-life challenges that managers encounter.

In (business) research, our main interest is normally in studying relationships. As a marketing manager,
you are interested in the relationship between units sold on the one hand, and decreasing prices or higher
marketing budgets on the other. Or, as an HRM manager, you are interested in the impact of training on
employee productivity. We will introduce statistics on relationships between two or more “variables”,
using a technique that is, in a sense, the mother of many more advanced statistical techniques.

Statistics cannot be effectively studied without a tool. The tool that we will use is JASP.

0.2 JASP Introduction

JASP provides an environment within which many basic and advanced statistical techniques have been
implemented.

Why JASP?
In your daily work you probably use spreadsheet programs like Excel. Although Excel can be used for simple

data sets and basic statistics, the program is not ideal for statistical tasks.

In this module, you will make use of both Excel for data entry and data manipulation, and both Excel and
JASP for carrying out basic statistical tasks.

The advantages of JASP are that it is “just enough” and focuses on only the most frequently used
techniques; it is very user-friendly, and easy-to-learn; and it is free of cost.

Click here for an introduction to JASP. From the introduction, you can go to the download page.
Alternatively, you can use the set-up file included in this module.



https://jasp-stats.org/2018/06/20/introducing-jasp-0-9/

DOWNLOAD | SUPPORT | TEACHING | BLOG | DONATE

Introducing JASP 0.9

© JUNE 20-2018

Figure 0.1: Introducing and Downloading JASP

The latest version of JASP is 0.9. However, make sure to download version 0.8.6, as, at the time of writing,
the latest version contained some bugs. And version 0.8.6 works perfectly for all examples in this manual.

0.3 On This Manual

In this manual we will introduce JASP following the recommended textbook by Landers?. All examples of
Landers will be replicated using JASP, and in the process you will become familiar with the program.
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® Free: JASP is 2n open-source project with structural support from
the University of Amsterdam.

@ Friendly: JASP has an intuitive interface that was designed with
the user in mind.

@ Flexible: JASP offers standard snalysis procedures in both thelr
classica| anc Bayesizn manifestations

So open a data file and take JASP for a spin!

Please keep in mind that this is a preview release and a number of
features are still missing

If JASP doesn’t do all you want today, then check back tomorrow: JASP
is being developed at break-neck speed!

Figure 0.2: The lay-out of JASP

2 Landers, R.N. (2013). A Step-by-Step Introduction to Statistics for Business. Sage Publications



The standard menu consists of just two tabs: Files, and Common. You can add tabs, but for this module,
the standard menu suffices.

Under the Files tab, you can open recent files; open new files using the browse option; or use sample files
provided by JASP.

Data files come in many formats. Software packages may have their own formats, and are able to read
several formats including data in Excel.

JASP only reads text files, in comma separated values (CSV for short) or tab delimited formats. CSV-files
are commonly used. CSV-files are plain text files, where the data are separated by commas. These files
typically have the extension csv. Excel-spreadsheets can be saved in CSV-format.

Let’s look at a simple example. Suppose you have a small data set on pizza deliveries, stored in Excel. In
the first row, you store the names of the variables (or columns). In the next rows, you key in the data of
four deliveries. The data indicate that customer 3, who lives three miles away ordered one small pizza on
Friday, for 1 €.

= = chapterd - Excel Robert Goedegebuure [5a) = O

File Home ‘ Insert | Page Layc|| Formulas| Data | Review | View | Develcper| Help| ,O Tell me Q;. Share

Al - Je customer v
A B C D E F G H -

1 |customer .size number  day distance  amount

2 1 large 1 Thursday 2 2

3 2 medium 2 Thursday 4 3

4 3 small 1 Friday 3 1

5 4 extra large 2 Friday 1 4

6

7

8

° Sheet1 | Sheet? | Sheet3 @ . y

Ready H m - 1 + 100%

Figure 0.3: Sample Data in Excel

Excel files cannot be directly by JASP, and first have to be stored in CSV-format. This is easy enough. Just
open the Excel file; go to <File><Save As>, browse to the folder where you want to store the data, and
then use the option CSV, as in the figure below.




Save As X

™ « 90 DATA > 90.107 JASP > MANUAL 1.0 FINAL ALL FILES v O Search MANUAL 1.0 FINALAL.. R
Organize ~ New folder = -
% This PC Name : Date modified Type Size
» 3D Objects chapter0 31/08/2018 11:49 Microsoft Excel Co... 1KB
m Desktop

=] Documents

% Downloads

B Music
= Pictures
B Videos
- 05 (C) v < >
File name: | chapter0 »
Save as type: CSV (Comma delimited) £

Figure 0.4: Save Data in CSV-Format
Some dos and don’ts when keying in your data in Excel:

= When keying in your data in Excel DO use the first row, and no more than one row, to name the
variables (or columns);

= For variable names DO use short words or codes;

= |nvariable names, DO NOT include spaces, like in “Number of Pizzas”. Use Number or NoP or whatever
instead;

= When keying in data in Excel, DO make use of numerical codes. Even in the example below, avoid string
variables, for size and day; it is easier to use codes from 1 to 4, for small to extra-large pizzas, and 1 to
7 for days of the week.

The charm of statistical packages is that you can add more telling labels to anyway.

You are probably a very busy researcher, with many projects. It is highly recommended that you create
folders for each and every project where you store all the files (maybe in subfolders) related to that project.

Once the data are stored in CSV-format, the next step is to open JASP and use the browse option under
<File><Open><Computer> to read the CSV-file.

Bl Jnsp
Common ==
Dhen Recent Recent Folders
Save ;
S Computer C DATA
e iE' 90.67.01 SCRIPTS_DATA
Bpa iliE OSF "9 Documents
Export Data 'C' Desktop
Examples
Sync Data
Close
ﬁ Browse

Figure 0.5: Browsing in JASP

In Windows, the file is shown with an icon that looks like:



a.

chapterQ

The “X” in the icon makes you think that the file is an Excel file, but it's a comma-separated-values text file
that can be opened in Excel.

After clicking on the file, it will open. Your screen should look like this.

. chapter0 - [m]

I o+
ot - | L B L2 - | A
Descriptives T-Tests ANOVA  Regression  Frequencies Factor
“cusmmer ‘ bslze ‘ ‘number ‘ hday ‘ ‘distance ‘ ‘amuunt

141 §|arge 1 Thursday 2 2

: 2 1 medium 2 Thursday 4 3

At small 1 Fiday 3 1 Welcome to JASP
7 4 extra large 2 Friday 1 4

A Fresh Way to Do Statistics: Free, Friendly, ai

Figure 0.6: Open a CSV-file using

Self-test

Make a data set in Excel of 10 of your friends and family members, and record their age, gender, length,
and hair color. Save the data set, and then read the data into JASP.

Try to find a way to get the average length!




1 The Language of Statistics

1.1 Getting Data into JASP

On page 16/17 of Landers there’s an example of a data set.

a dataset —

a variable

)
 Case store a1 a2 | a3 NS
2 5 y

no

a case

>

yes

a case {

1
2
3
4
5
6 no
7

SN O E@N T NN X

2 3
5 3
1 1 2
2 1
1 2
il 3

nho <— adatum

Y
some data

Figure 1.1: Example of a data set (Landers, 2013: 16)

Files needed:
chapterl.xlsx
chapterl.csv
sally.xlIsx
sally.csv
sallyForJASP.csv

yes some data

Many researchers use Excel to key in their data. We have done the job for you, in chapterl.xlsx. Open the
file in Excel, and have a look! As explained, you have to save the file in CSV-format, in order to be able to

read the data in JASP.

7 - Je || 2
A B C D

1 |Store Q1 Q2 Q3

2 |A 2 5 yes

3 A 2 3 no

4 B 5 3 yes

5 B 1 1 yes

6 |C 2 1 yes

7 |D 1| 2_|no

8 |D 1 3 no

[s]

Figure 1.2: Data for Chapter 1 (in Excel)
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. chapter1 - O X

m&)mmon"*' =
had - | L B LX) e

Descriptives T-Tests ANOVA  Regression Freguencies Factor
& Store | &ai | [ Yord | L 2lor] |

1A 2 5 yes
o Fe— . N ] |JASP
3 5 3 yes Welcome to JASP
? B 1 1 yes A Fresh Way to Do Statistics: Free, Friendly, 4
? C 2 1 yes
? D 1 2 no
7 D 1 3 no ® Free: JASP is an open-source project with str ~
—1 4 »

Figure 1:3: The data imported in JASP

Descriptive information can be obtained using the <Descriptives> tab. You can click on the variables that
you want to describe, and click them to the Variables column. The moment you do so, the Results screen
on the right will show the number of valid and missing cases; the mean (average) value; the standard
deviation; and the minimum and maximum value.

Let’s ask for descriptive information on variables Q1 to Q3.

Ml chapter1*
EDR o | +
.
s - 18- &k |2 Hs - ‘ i
Descriptives T-Tests  ANOVA  Regression Frequencies Factor
& Store &a1 Ha &3 i
‘ | | & Store Variables oK Results
1]a 2 5 ves &a =1
2 |a 2 3 no & Descriptives
— & a3
3B 5 3 yes
= Descriptive Statistics
4|8 1 1 ves
1 Valid
5|C 2 1 yes Missing
| Mean
6D 1 2 no Std. Deviation
| ) Minimurn
7D 1 3 no S Maximum
—! >
[ Frequency tables (nominal and ordinal variables)
[» [Piats |
[ » I statistics |

Figure 1:4: Descriptives in JASP



chapter1*

m Common ‘ +

T I .,
Bt - | L8 |- L% - Sa- | s
Descriptives T-Tests ANOVA  Regression  Freguencies Factor
& store Variables oK Results
> & Q1
[ Yo Descriptives
oo Q3
Descriptive Statistics
Q1 Q2 Q3
Valid 7 7 7
Missing 0 0 0
Mean 2.000 2571
Std. Deviation ~ 1.414 1397
split Minimum 1.000 1.000
Maximum 5.000 5.000
Note_Not all values are available for Nominal Text
variables
O Frequency tables (nominal and ordinal variables)
» |Plots
L] |Stati51|(s

Figure 1:5: Default Descrip

tives of Variables Q1-Q3

Variable Q2, for example, has a mean value of 2.571, and there are 7 valid (non-missing) values. Since variable Q3 is

a text variable, it is not possible to show its mean value, as

explained in the note to the table.

In the options part at the bottom, you can ask for frequency tables, as would be relevant for Q3. You can opt for

additional descriptive statistics like median and mode, and

ask for plots. For example, we tick the option frequency

tables, and add the median value. Part of the output is shown in figure 1.6. The default options (e.g. Mean) are ticked;

you can suppress them by unticking the boxes.

Bl cnapre

ER o |+
ot - | L B - S - | b
Descriptives. T-Tests ANOVA  Regression  Frequencies Factor

split

4288 4280 100000

A Frequency tabie:

- [pots

[ Distribution plots.

[ Cometation plat

Forcant__ Va Percart__Cumulai Percant

P 2857
13 s 100000

[ Bosplots
Plots
Drstraton piots
 [statstics
n
Parcantie Values Central Tendency @
[ Cuariles Ed Mesn
[ Median ESr
] cut points for equalgroups
[ Mode
[ Pescentiles: O sum z 21
g
&
Dispersion Distribution it
[ 5td: devintion [ Minimum ] Skemness
Olvarisnce [ Masimum [ Kurtosis 0

[ Renge [J5Emean

Figure 1:6: Extra Descripti

i ‘Bl
ves of Variables Q1-Q3

A nice feature is that you can copy parts of the results page, and paste them into a Word document (your thesis or

report). See the bar chart for Q3 in the figure below.
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£

Frequency
N w

0

no yes
Q3

Figure 1:7: Bar Chart for Q3
1.2 Data Skill Challenge
Landers, page 20, Data Skill Challenge 3

Here are Sally’s data for her first four pizza deliveries (Customer ID; Size of Pizza Ordered; Number of
Pizzas Ordered; Day of the Week; Distance from Store; Time of Day; Total Price):

Customer 1: Large, 1, Thursday, 2 km, evening, £2

Customer 2: Medium, 2, Thursday, 4 km, evening £3

Customer 3: Small, 1, Friday, 3 km, afternoon, £1

Customer 4: Extra Large, Friday, 1 km, evening £4

Task: Enter the data in Excel, and read the data into JASP

Extra 1: Add new variables; change variables

Extra 2: Summarize the data (number of deliveries by day; average amount spent; and so on)
Extra 3: Sorting your data

Solutions

Reading the data

If you don’t feel like keying in the data (in Excel, or in JASP) then feel free to import the file sally.csv in
JASP. Or, to get some practice, first save sally.xlsx in CSV-format and then read the data in JASP.

This is what the data looks like.

nsally
MCommon|+
W - | LEE- B LX- %% | A

T-Tests ANOVA  Regression  Freguencies Factor

Descriptives

‘custumer ‘ bsize ‘ ‘number | ﬁday ‘ ﬁtime ‘ ‘distan(e ‘ ‘amuunt

1 ilarge 1 Thursday evening 2 2

2 medium 2 Thursday evening 4 3

4 extra large |2 Friday evening 1 4

1
2
3|3 small 1 Friday afternoon 3 1
4

We can summarize information and compute means.

13



Results

Descriptives

Descriptive Statistics

customer size number day time distance amount
Valid 4 4 4 4 4 4 4
Missing 0 0 0 0 0 0 0
Mean 2.500 1.500 2.500 2.500
Std. Deviation 1.201 0.577 1.201 1.201
Minimum 1.000 1.000 1.000 1.000
Maximum 4.000 2.000 4.000 4.000

Note. Not all values are available for Nominal Text variables

The mean distance is 2.5 (kilometers). The distance ranges from a minimum of 1 to a maximum of 4.

The mean size of a pizza we do not know, since it’s coded as a string variable. The customer identifier is
coded numerically, but interpreting the mean is pointless.

It would be more elegant to leave out customer, size, day and time from the descriptives. For these
variables, you can ask for frequencies and suppress information on mean, minimum and maximum.

Frequencies

Frequencies for size

size Freguency Percent Valid Percent Cumulative Percent
exira large 1 25.000 25.000 25.000
large 1 25.000 25.000 50.000
medium 1 25000 25000 75.000
small 1 25000 25000 100.000
Missing 0 0.000
Total 4 100.000

Freguencies for day

day Frequency Percent Valid Percent  Cumulative Percent
Friday 2 50.000 50.000 50.000
Thursday 2 50.000 50.000 100.000
Missing 0 0.000
Total 4 100.000

Freguencies for ime

time Frequency Percent Valid Percent Cumulative Percent
afternoon 1 25.000 25.000 25.000
evening 3 75.000 75.000 100.000
Missing 0 0.000
Total 4 100.000

Extra 1: Add new records or variables; change variables

JASP does not offer a direct way to edit data, or to generate new variables in your data set. You have to
do this in Excel. But luckily, you can use the synchronize (Sync data) facility. If you double-click on the data
panel, the CSV-file will open in Excel. You have access to all functions in Excel.

As an example, assume that we have the distance in kilometers but we want to have a new variable that
gives the distance in miles (1 mile ~ 1.6 km). To create dist2 we add a column, and use an Excel function
to compute the distances in miles.

14



F G H

distance amount dist2

2 2 =F2/1.6
4 3 =F3/1.6
3 1 =F4/1.6
1 4 =F5/1.6

Upon saving the CSV-file (sallyForJASP.csv, in order to keep the original data intact), the new variable is
added automatically to the data in JASP (after using Sync Data under File).

One warning: the CSV-file stores the values rather than formulas, so in order to keep the overview of
everything you have done (like the formulas in the table above), you would have to note it down
somewhere else.

The best option is to make all changes in the Excel (*.xIsx) file, and add a worksheet with notes, comments,
and so on. The Excel-file will keep the formulas.

Next, store the worksheet containing the data as a CSV-file, and read that one in JASP.

S

B C D E [F G H J
ze number day time distance amount dist2
rge 1 Thursday evening 2 2 1.2500
iedium 2 Thursday evening 4 3 2.5000
nall 1 Friday afternoon 3 1 18750
xtra large 2 Friday evening 1 4  0.6250

sally*

Common +

Mad - | LB2- [ Lx- S5 | G-

Descriptives T-Tests ANOVA  Regression  Freguencies Factor
| & customer oosize &b number doday & time &b distance &5 amount dist2
1H large 1 Thursday evening 2 2 125
22 medium 2 Thursday evening 4 3 25
33 small 1 Friday afternoon 3 1 1.875
4 |4 extralarge |2 Friday evening 1 4 0.625
Self-test:

Suppose that all distances (in kilometers; and converted into miles) were incorrect, since Sally first has to
pick up the pizzas from the kitchen which is an extra mile drive. To make that correction, add 1 (mile) to
dist2.

In the same way you can add data for additional respondents. Suppose that a new customer orders one
large pizza, on a Wednesday morning; all other data for this delivery are missing.

15



=

File  Home Insert Pagelayout Formulas Data Review View Developer Help O Tell me wha

E6 - I morning
A B c D E F G H | J K L M

1 customer size number  day time distance amount  dist2
2 1 large 1 Thursday evening 2 2 1.25
3 2 medium 2 Thursday evening 4 3 25
4 3 small 1 Friday afternoon 3 1 1.875
5 4 extra large 2 Friday evening 1 4 0.625
6 5 large Wednesday ~ morning
7
8 sally*

9

T R o |+

1"

12 laa - Lk |- X - S - dane

13 Descriptives T-Tests  ANOVA  Regression Frequencies Factor
1: | Sbcustomer | #size & number day dtime dhdistance & amount % dist2
16 large 1 Thursday | evening 2 2 125

1; 2|2 medium 2 Thursday evening 4 3 25

19 33 small 1 Friday afternoon 3 1 1875

;2 4|4 extralarge |2 Friday evening 1 4 0625

22 55 large Wednesday | morming

23

Double-click on the data panel, or go to the CSV-file if it’s still open. Add a new line of data, save the file,
and the new data are immediately visible in JASP. The missing values are shown as a dot, and will be
interpreted as missing when describing the data.

&b customer Variables OK Results
> & size
&b number Descriptives
& day
& time Descrintive Statistics
& distance sze number day tme  distance _ amount ___disi2
@b amount
vaiie 5 1 5 5 4 4 4
g
b distz Missing 0 1 0 0 1 1 1
Mean 1.500 2500 2500 1.563
Std. Deviation 0577 1.201 1.201 0807
Split Minimum 1.000 1.000 1.000 0625
Mazimum 2000 4000 4000 2500
‘Note. Not allvaluss are avaiable for Nominai Text variabies

Extra 2: Summarize the data (number of deliveries by day; average amount spent; and so on)

All descriptive statistics are readily obtained under the Descriptives tab. Use the default settings first, and
start experimenting with the various options. Ticking or unticking options takes immediate effect on the
results displayed in the righthand side window.

You can break down the descriptive information for one or more variables, by one variable. For example,
you can analyze the number of orders per day of the week. The results below indicate that the average
number of pizzas ordered is the same (1.5) on both days for which we have information. We do not have
information on the number of pizzas ordered on Wednesday, and a “NaN” (Not a Number) is displayed

~
&b customer Variables oK Results
o size »> @b number
& time Descriptives
&b distance
amount
'\" Descriptive Statistics
% dist2
number  distance _amount dist2
Valid 4 4 4 4
Missing 1 1 1 1
Mean 1.500 2.500 2500 1563
Std. Deviation 0.577 1201 1201 0.807
Split Minimum 1.000 1.000 1.000 0625
Maximum 2,000 4,000 4000 2500
> | @ day

Descriptives
[ Frequency tables (nominal and ordinal variables)

¥ |Plots Descriptve Statistics
numper
[] Distribution plots Frigay  Thursday  Wednesday
[ Correlation plot Valid 2 2 0
Missing 0 1
[] Boxplots Mean 1500 1,500 NaN
Median 1500 1.500 NaN
Label Outliers Minimum 1.000 1.000 @
Maximum  2.000 2.000 =
Color
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Extra 3: Sorting your data

JASP cannot sort the data for you. Again, you have to open the data in Excel (in CSV-format), and use the
Excel-functions to sort the data, and then save the data. The sorted data are now shown in JASP. For
sorting on the variable size:

sally‘

Common o=
e I .
Bt - | LEE- - L% - S - A
Descriptives T-Tests ANOVA  Regression  Frequencies Factor

o0 customer oo size oo number oo day o time oo distance &5 amount dist2

14 extra large |2 Friday evening 1 4 0.625
21 large 1 Thursday evening 2 2 125
35 large Wednesday 'morning

412 medium 2 Thursday evening 4 3 25

53 small 1 Friday afternoon 3 1 1.875

To summarize: click on Sync Data under the <File> tab. Then make the changes in the CSV-file, and save
the file. The changes will show in JASP.

Self-test

Open the CSV-file that you have created in the previous chapter in JASP, with data on your 10 friends and
family members.

You have recorded their age, in years. Now generate a new variable that contains their age in 10 years
from now.

Advanced: if you have recorded length in centimeters, convert it to feet and inches (in new variables)! For
example, 180cm is equivalent to 511" (5 feet and 11 inches, rounded to nearest integers).

Sort the data set in descending order of age.

Summarize age, for male and female persons.
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2 Working with Numbers and Graphs
Files needed:

chapter2freq.xls
chapter2freq.csv
chapter2case.xlsx
chapter2case.csv [data, n=1,334]
chapter2dsc.csv
chapter2dscl.csv

alienation.csv [data]

2.1 Descriptive Information

Sometimes you have to key in your own data. But at other times somebody has already done the job for
you! On page 27 of his textbook Landers introduces a list of muffin purchases. The list was entered into an
SPSS data file by Landers, and converted to a CSV-data file named chapter2freq.csv®.

‘ Muffin Purchases

Chocolate
Chocolate
Banana Nut
Apple Cinnamon
Chocolate
Banana Nut
Apple Cinnamon
Apple Cinnamon
Chocolate
Bran
Apple Cinnamon
Banana Nut

Figure 2.1: The data in chapter2freq.xlsx

On page 27 Landers presents a simple frequency table. It looks like:

Value f rel. f cum. f
Apple Cinnamon 4 4/12 = .33 4/12 = .33
Banana Nut 3 3/12 = .25 7/12 = .58
Bran 1 1/12 = .08 8/12 = .67
Chocolate 4 4/12 = .33 12/12 =100

(Source: Landers, 2013)
Figure 2.2: An Example of a Frequency Table

3 There are several ways to transfer data from one format to the other. A very handy package is StatTransfer which
has the capability to convert any format into any other format. A (free) alternative is to use the foreign package in R
that enables you to read most formats and convert them into readable formats. Please refer to our module on Basic
Statistics for Business Using R for detailed information.
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In the table you can read the frequency of the various flavors sold (4 times Apple Cinnamon); the
cumulative frequency (7 times apple cinnamon or banana nut); the relative frequency (0.33 or 33% of the
muffins sold are chocolate flavor); and the cumulative relative frequency.

In JASP you can obtain the same information using Descriptives.

m chapter2freq* - [m]
Common +

Bad - | LEE- BH- X - S5 | &

Descriptives T-Tests ANOVA  Regression  Frequencies Factor

Variables oK Results

> &> MuffinPurchases

Descriptives

Descriptive Statistics
MufinPurchases

Valid 12
Missing o
Mean

Std. Deviation

Split Minimum

Maximum

> Note. Not all values are available

for Nominal Text variables

B Frequencies
Frequency tables (nominal and ordinal variables)

Frequencies for MuffinPurchases

» [Plots MufinPurchases  Frequency  Percent  Valid Percent  Cumulative Percent
5 Apple Cinnamon 4 3333 33333 32333
» | Statistics Banana Nut 3 25.000 25.000 58333
Bran 1 8333 8333 66.567
Chocolate 4 33333 33333 100.000
Missing 0 0.000
Total 12 100.000

Figure 2.3: Frequency Table in JASP
2.2 Graphs
2.2.1 Bar Chart
We will illustrate how the graphs in Landers can be replicated.

First of all, we want a bar chart like in Landers, page 29.

Bar Chart of Muffin Purchases

44
34

€

=3

8 2
14
0 T T T T

Apple Cinnamon Banana Nut Bran Chocolate
Muffin Type

Figure 2.4 Bar Chart (Landers’ example)

The bar chart is obtained by opening the Plots options, and clicking on Distribution Plots.
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chapter2freq*

| conmen |+
Mot - | i B L2 =] A

Descriptives T-Tests ANOVA  Regression  Frequencies Factor

Variables OK Descriptives

> & MuffinPurchases

Descriptive Statistics

MuffinPurchases
Valid 12
Missing 0
Std. Deviation

Minimum

Maximum
Note_ Not all values are avaiable
for Nominal Text variables

split

Le

Plots

Distribution plots

[] Frequency tables (nominal and ordinal variables) MuffinPurchases
~ [Plots
4
Distribution plots
[ Correlation plot 3

[ Boxplots

Label Outliers

Color
Boxplot Element

0
Violin Element Apple Cinnamon Bran  Chocolate M
v [« >

Frequency
N

Figure 2.5 Bar Chart (Landers’ example)

You will notice that the long labels “Apple Cinnamon” and “Banana Nut” do not fit on the horizontal axis,
and parts are omitted. That would look bad in your report. For cosmetic reasons, you can add a new
column with short labels in your CSV-file, and sync it to JASP. For example:

i chapter2freq* - ] X
B e |+ =
.
Bat - | L2~ BE- X == -] -
Descriptives TTests  ANOVA Regression Frequencies Factor
,, B
& MuffinPurchases Variables [Cox ] Valid 12
» | & Mmuffinshort g L
Std. Deviation
Minimum
Maximum
Note. Not allvalues are
available for Nominal Text
variables
Plots
split Distribution plots.
s ’—‘ Muffin Short
4
[0 Frequency tables (nominal and ordinal variables)
3
~ |Plots oy
s
3 2
Distribution plots g
[ Correlation plot vy
[] Boxplots
0
tabel Outliers AC BN Bran Choc
Color MuffinShort
Boxplot Element
Violin Element -
vl | »

Figure 2.6 Bar Chart — with edited labels

Advanced: recoding data using Excel

Here, we are “recoding” data. In statistics, we often want to recode our data. In the example above, we recode the
existing codes containing long labels one-to-one into shorter labels. In Excel, we can achieve this using the viookup()

function.
We will do it step-by-step.
1. Open the Excel file chapter2freq.xlsx.




2. The first column contains the long labels. We want to add a second column containing shorter labels using a
recoding scheme (in which, for example, “Apple Cinnamon” is recoded into “AC”)

3. The recoding schemes are in a separate worksheet, recode. In the range A11:B14 we add the original codes in
column A and the new codes in column B. In cells A3:B9 we have used a pivot table, just to get a sorted list of all
original codes in our data.

= = chapter2freq [Compatibility Mode] - Ex..  Rol

File  Home Insert Pagelayout Formulas Data Review V]

A B, C | D E
1]
2
3 | Count of Apple Cinnamon
4 |Apple Cinnamon ~ | Total
5 |Apple Cinnamon 3
6 Banana Nut 3
7 Bran 1
8 Chocolate 4
9 |Grand Total 11
o,
11 |Apple Cinnamon AC
12 |Banana Nut BN
13 |Bran Bran

14 | Chocolate (Choc

= ‘ dataset | recode ®
4. We name the range A11:B14 in recode as RecodeMuffin

5. In the worksheet with data, we add a second column MuffinShort, based on a VLOOKUP() formula. The formula
looks up the value in column A, and then looks up that value in RecodeMuffin, the recoding scheme in the
Recodings worksheet. It returns the value in the second column of the recoding scheme.

H ©- S

File Home Insert  Pagelayout Formulas Data Review  View Dev,
B2 - 5 =VLOOKUP(A2, RecodeMuffin,2)

A B C D E F |

1 MuffinPurchases MuffinShort
2 |Apple Cinnamon
3 |Apple Cinnamon AC
4 Apple Cinnamen  AC ~VLOOKUP(A2,RecodeMuffin,2)
5 |Apple Cinnamon AC
6 |Banana Nut BN
7 |Banana Nut BN
8 Banana Nut BN
9 |Bran Bran
10 | Chocolate Choc

Figure 2.7 Recoding in Excel using VLOOKUP()

2.2.2 A Bigger Data Set

The data set
Normally we have data sets with more observations, and more variables than in the simple examples used
so far.

The example of Landers contains no less than 1,334 records.
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Label Value f rel.f cum.f

Art Supplies 1 148 0.11 0.11
Discount Clothing 2 44 0.03 0.14
Electronics 3 309 0.23 0.38
Household Goods 4 118 0.09 0.46
Jewellery 5 123 0.09 0.56
Men’s Fashion 6 37 0.03 0.58
Sporting Goods 7 151 0.11 0.70
Vehicle Parts 8 125 0.09 0.79
Video Games 9 48 0.04 0.83
Women’sFashion 10 231 0.17 1.00

Figure 2.8: Frequency Table (Landers’ example; page 43)
The data are in chapter2case.csv. Read the data in JASP, and using Descriptives, you get:

Frequencies

Freguencies for siore

store Freguency Percent Valid Percent Cumulative Percent

Art Supplies 148 11.094 11.094 11.094
Discount Clothing 44 3.298 3.208 14.393
Electronics 309 23.163 23.163 37.556
Household Goods 118 8.846 8.846 45.402
Jewelry 123 9.220 9.220 55.622
Men's Fashion 37 2774 2774 58306
Sporting Goods 151 11.319 11.319 69.715
Vehicle Parts 125 9.370 9370 79.085
Video Games 45 3.598 3.508 52.684
‘Women's Fashion 231 17.316 17.316 100.000
Missing o 0.000

Total 1334 100.000

Figure 2.9: Frequency Table in JASP

Bar chart
Let’s make a bar graph of store. As expected the full labels do not fit on the x-axis. Using Excel, we have
added a column with just the first character of the label.

To accomplish this in Excel, you can use the LEFT() function, as shown below, or alternatively use recoding
via VLOOKUP(). Again, save the data and they are synced to JASP.

Insert Page Layout ~ Formulas Data Review  View Developer

D2 - S | =LEFT(A2,1)
A B C D E F

1 store minutes purchases  StoreShort

2 |Art Supplies 4 1|A I}
3 |Art Supplies 4 2A

4 | Art Supplies 3 2A

5 | Art Supplies 14 3 A

6 Art Supplies 6 0A

7 |Art Supplies 17 2A

8 | Art Supplies 2 2A

9 Art Supplies 2 4 A

10 |Art Supplies 2 2A

Figure 2.10:'Creatin’g' Short Labels



StoreShort

320
280
240
200
160

Lk

StoreShort

Frequency

5o
(=T =]

Figure 2.11: Bar chart

Histogram
Minutes spent on websites, is a continuous variable. Rather than a bar chart, we use a histogram to show
the frequency or the density of ranges of minutes spent on the websites.

The width of the bins is set by default, and cannot be changed in JASP.

minutes

Density

%L"“—““

0 5 10 15 20 25 30 35
minutes

Figure 2.12: Histogram

As an alternative to a histogram for depicting distributions, you can opt for a box-plot. We will postpone
that to the chapter on ANOVA.

Scattergram
The challenge in statistical research starts when we start analyzing relationships between two or more
variables.

In our example, the obvious interesting questions are about the type and strength of the relationship
between minutes spent on a website on the one hand, and the number of purchases on the other. We can
show the relationship graphically in a scattergram.

The commands below reproduce the scattergram on page 63 of Landers.

Rather than using Descriptives, we use Regression. Under Regression, click on Correlation Matrix. Click
the two variables of interest, to the right panel. Next, select the options you’re interested in. Here, we
have selected the plot for the correlation matrix, and added some statistical information.

From the graph it is clear that there is a positive correlation between the two variables: the number of
purchases goes up with minutes spent on the website. As a measure of strength of the relationship, the
correlation coefficient is computed. We will come back to that in the chapter on correlation. The
correlation is significantly different from zero, indicating that the positive relationship that we have found
is not coincidental.
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M chapter2caset - [u] ®
| corren |+ =
.2 -
a8 - . |3l . =g . P
Descriptives T-Tests  ANOVA Regression Frequencies Factor
N s
t & purchases Correlation Matrix
Poarson Coneations
Pearsonsr o Lower 8% C1__ Upper 95% CI
minutes - purchases 0,685 =.001 0658 0713
Tp= 057 p= 01 p= 001
st
Correlati e ) Correlation Plot
[ Display pairwise table
[ Pearson Report significance
Flag significant comelations
[] spearman Confidence intervals
I I}
[ Kendall's tau-b s v .
1 Vovic-Sellke maximum p-ratio @
8
i 2
Hypothesis Plots g
® Cormelated Correlation matrix o
() Correlated positively ] Densities for variables
(O Conmelated negatively [] Statistics
0 10 20 30 40
minutes

Figure 2.13: Scattergram

The problem with the graph is that, even though we have no less than 1,334 records, you only see a much
smaller number of dots. How come? The data are recorded in discrete units: people spend one, two, three,
et cetera minutes on websites and make one, two, three et cetera purchases. As a consequence, all
occurrences of, say, 3 minutes spent on the website and 2 purchases made are represented by one single
dot!

To get a better view of the density, researchers add some “jitter”: a small random deviation from the actual
values in the data set: (3; 2) for example may become (3.05; 1.95). This option is implemented in STATA,
and in R packages.

Advanced: adding jitter

You can add jitter to the variables, in Excel. We have used the RANDBETWEEN(bottom,top) function. The
function adds a random number between bottom and top. Since we want to center the random deviation
around the actual values, be pick a negative and a positive number of the same absolute value, for example
-5 and +5. Since -5 and +5 would add deviations that are very large relative to the actual numbers we divide
the random number by a scale factor (say, 5). In order to experiment with different values, we store these
three values (for bottom, top and scale) in a separate worksheet. Be sure to do this in Excel sheet, so that
the formulas are stored!

H - s chapter2casel -
File Home Insert Pagelayout Formulas Data Review \View Developer Help 2 Tell me what you want to do
ES - Jr =B5+RANDBETWEEN(JitterSettings!SAS2 JitterSettings! SAS3)/JitterSettings! SAS4
A | B | € | D E F | G H | [ J K |
1 |store minutes  purchases StoreShort minutes] Purchases)
2 |Art Supplies 4 1A 3.80 2.00
3 |Art Supplies 4 2A 4.80 1.60
4 | Art Supplies 3 2A 2.80 2.60
5 |Art Supplies 14 3A
6 |Art Supplies 6 0A
7 |Art Supplie
8 |Arts%
9 |Art Supplies
10 |Art Supplies 2 2 A 2.40 2.40
11 |Art Supplies 1 2 A 0.80 3.00
12 |Art Supplies 2 2 A 48 B
13 |Art Supplies
14 |A
15 |Art SuppIfe
16 | arr Qonnlise 7 A A 2n 100
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H ©- s chapter2case) - Excel

Cc5

File Home Insert Pagelayout Formulas Data

- fe

A B C D E

|jitter
| -5 bottom
| 5 top

5 scale

L1

00~ o W w2

‘ chapter2case) | JitterSettings @

Figure 2.14: Adding Jitter to your Data

Remember that adding jitter, is only done for cosmetic reasons: your scattergram will look better! The correlation
coefficient to be reported is the one based on data without jitter. If you repeat this exercise, your values will be a little
different from mine: the random numbers will be different after each calculation.

12 1
10 -
8 -
6 -

44

rurchasesJ

2 -
0e+00 +

-2e+00 -~

T
0 10 20 30 40
minutesJ

Figure 2.15: Scattergram with Jitter

2.3 Data Skill Challenges

Task 1 (Data skill challenge 3, Landers, page 65)

Consider the following dataset and create a data frame.

Sales in Chinese Yuan: 200000; 125000; 180000; 170000; 210000; 190000; 220000; 180000

Depict the data in a histogram!

The data are in chapter2dsc.csv.

In cases like this, since all figures end with three zeroes we might as well skip them. When drawing a
histogram, JASP computes defaults for number of bins, and the width of the bins.

Even if we tell JASP that the variable is continuous, the limited number of unique values causes the
program to produce a bar chart, rather than a histogram. In a histogram, the values on the x-axis can be
interpreted as distances. But the distance between 125 and 170, should be larger than the distance

between 170 and 180!
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You can click on the variable in the data panel, to change the type of variable. You can define the variable
as Continuous, Ordinal or Categorical. From its contents, JASP would interpret salesYuan as categorical
(each value is a code for a group), while actually it should be interpreted as a number (sales can be any
number in the range from 0 to infinity). As indicated, even changing the type of variable to Continuous

does not have an effect on the plot that we get.

I chapteszasc

oK Results.

Desariptives

Frequency tables {nominsl and orinal varisties)

salesYuan

=
(%)
®
5 _
z 4
]
L=
1

125 170 180 190 200 210 220
salesYuan

This problem is a minor one. If we create a data set with more (32) unique numbers, then we do get a
histogram. In the example below, we have replicated the eight records four times, and added a random
number between 0 and 20 to each record. The data can be found in chapter2dscl.csv.

sY2

\\
/—\\’F_

120 140 160 180 200 220 240
sY2

Density
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Task 2
Open the file “alienation.csv”
The file contains data on alienation from society, and on income.

= Summarize the data (how many records do we have? What’s the mean of income and alienation? And the

minimum and maximum values?)
= Display the distribution of the two variables, graphically
= Display the relationship between the two variables, graphically, and add a line of best fit!

Distribution plots

alienation
The data can be displayed graphically.

14 -
12 - —
10
8_
6_

! HAEE

0_ L JL 1
12 3 4 5 6 7 8 9 10

alienation

Frequency

We can build a histogram for income.

Distribution plots

income

'\
/"'"’/ \

N

Density

.

I T T T T T T 1
0 20000 60000 1e+05 140000

income

On the axis, the value for 100,000 is displayed as 1e+05 (the so-called scientific notation, which stands for
1*10°). In your report, you can avoid this by adding a column for income in thousands of units (dollars, or

euros).
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Density
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IncShert

The relationship between the two variables can be shown in a scattergram.

Correlation Plot

150000 -
100000 -

50000 -

Income

Oe+00 -

-5e+04 -

alienation

Since we have a limited number of observations (100) and at least one of the variables (income) is
continuous, most of the points are unique, and do not overlap with other points. You can add some jitter
yourself, by adding a column (alienlitter) in Excel that adds a random positive or negative deviation to the
original value of alienation, using Excel’s RANDBETWEEN() function.

H - 5

File Home Insert. Page Layout Formulas  Data Review  View Developer Help
D2 - fr | =A2+RANDBETWEEN(-5,5)/10

A B © D E F G H 1

1 |alienation income  IncShort alienlitter
2 0 48000
3 3 91000
4 0 70000
5 10 5000
7 4 57000
8 1 128000
9 5 55000
10 7 28000
11 6 69000
12 5 52000
13 9 15000
14 1 129000




Correlation Plot

150000 -

100000

50000 -

Income

0e+00

-5e+04 -

aliendJitter
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3 Central Tendency and Variability

Files needed:
chapter3.xlsx
chapter3.csv
chapter3_dscl.xIsx

3.1 Looking at the “Distribution” of Your Data

The data for chapter 3 (Landers, page 66-67) represents ratings by 20 restaurant-goers of the eight dishes
on the menu of a restaurant.

According to the text, a 7-point scale was used, but since there are no values
larger than 5, this is either a mistake in the text or the quality of the food was
not that good.

"Pick that lettuce out!
You could get Salmonella."

We open the CSV-file (chapter3.csv) and show the data.

M chapterz

File Common | =+

Bt - | L2 B L2 S| A

Descriptives T-Tests  ANOVA  Regression Frequencies Factor

Bdisn | dbdishz & dish3 & disha & dishs & dishe & dish7 & dishe
1 iz 2 3 2 3 1 1 3
22 : 3 4 2 1 1 2
33 3 3 1 2 3 1 3
43 3 5 2 B 3 4 2
53 4 2 3 2 4 2 4
6 |4 1 3 1 2 2 2 2
703 5 1 2 3 1 3 4
8 2 1 3 3 3 3 3 3
9 |2 3 2 1 2 4 4 3
103 4 3 3 3 2 2 1
13 2 3 5 3 2 3 3
122 3 1 2 1 3 3 2
132 2 2 2 4 4 2 4
14 |3 1 1 5 2 3 1 2
155 2 1 3 2 3 2 4
16 |3 3 1 4 3 2 3 2
17 |4 1 2 4 3 4 2 1
18 |2 3 4 3 2 1 3 3
192 2 2 3 3 3 2 2
20 1 1 4 2 4 3 2 3

Figure 3.1: The data for chapter 3

We describe the data, and add some options (skewness and kurtosis).
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chapter3* - a X

common | +

Bam - | LEE- [l L% - Sz - | da-

Descriptives T-Tests ANOVA  Regression  Frequencies Factor
Variables oK Results
& dish1 ~
& dish2 Descriptives
&b dish3
& dishd Descriptive Statistics
& dish5 disn1 disn2 disn3 dishd disns dishs
&b dishb
Valid 20 20 20 20 20 20
& dish? Missing 0 0 0 0 0 0
&b dishg v Mean 2700 2.400 2.450 2750 2700 2600
Median 3.000 2.000 2,500 3.000 2.000 3.000
Split Std. Deviation 0923 1142 1146 1.209 0923 1.046
Skewness 0677 0508 0369 0335 0677 -0204
Sto. Ermor of Skewness 0512 0512 0512 0512 0512 0512

Kurtosis 0.236 -0.102 -0.323 -0.537 0.836 -0.980
Sta. Error of Kurtosis 0.892 0.992 0.992 0.892 0.992 092
Minimum 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 5.000 5.000 5.000 5.000 5.000 4.000

[1 Frequency tables (nominal and ordinal variables)
» |Plots

¥ | Statistics

Percentile Values Central Tendency
[ Quartiles litz
Median
[1 Cut pointsfor: 4 equal groups
] Mode
[ Percentiles : [ sum
Dispersion Distribution
Std. deviation [] Minimum Skewness
[ Variance Maximum Kurtosis
[ Range []5.E. mean

Figure 3.2: The data for chapter 3 in JASP

The mean of a distribution is simply the sum of values divided by the number of values. The mean (or
average) is a widely used measure of the central tendency of a distribution.

XX

n

X =

The 2 (sigma) is the Greek letter “S”, and is the operator used for computing the sum of values. Here, we
compute the sum of all grades (i =1 to 6). The "n” is the number of observations.

For example, if your grades for 5 modules are: 5, 5, 6, 7, 9, then your mean (or average) grade is the sum
of all grades (32) divided by the number of grades (5), or 32/5 = 6.4.

An alternative measure of central tendency is the median. Your median grade is the grade that is exactly
in the middle of the distribution. To compute the median, you first sort the grades from lowest to highest.
The median is the 3" observed grade in the sorted list, as it has as many observations to its left as to its
right; the median is therefore 6. In case of an even number of observations, we pick the mean of
observations n/2 and n/2+1. For example, if you would complete your 6™ module with a grade of 9, then

your sorted list of grades is 5, 5, 6, 7, 9 and 9. The median is in between the 3™ and 4™ observation; we
take the mean of both, (6+7)/2 = 6.5.

Let’s use JASP to do the same. The sum of grades is now 41. The mean is 41/6 = 6.83. The median is,
indeed, 6.5.
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grades*

Common ap

it. |#f. |2 3
inl - Ltz - [efe~r LA - = 7 Wl T
Descriptives T-Tests ANOVA  Regression  Frequencies Factor
rade )
L) Variables oK Results
15 » ull grade
215 Descriptives
36
Descriptive Statistics
47 grade
59 Valig 6
Missing 0
Mean 6833
69 Median 6500
split Std. Deviation 1.835
Minimum 5.000
> Maximum 9.000
Sum 41.000
O Frequency tables (nominal and ordinal variables)
» |Plots
¥ | Statistics
Percentile Values Central Tendency
[ Quartiles Mean
Median
[] Cut points for: 4 equal groups
[ Mode
[ Percentiles :

[ Sum
Figure 3.3: Mean, median and sum
As a measure for variability or dispersion in the data, we can use simple methods like minimum and

maximum, and range (maximum minus minimum). In our example, the grades are between 5 and 9, and
therefore the range is 4.

Widely used measures of dispersion, are the variance, and its square root the standard deviation. These
are defined as:

Lx —%)°

n
Standard Deviation = s = /s?

In the formula for variance, the numerator computes the sum of squared deviations from the mean. The
closer the grades are to their mean, the lower the variance (dispersion). In the extreme situation of all
grades having the same value (say, a grade of 6 for all modules), the mean grade (6) is identical to each
and every grade, and the deviations are all zero. The variance and the standard deviation too would be
zero.

Variance = s? =

Since the variance is measured in squared units, the standard deviation, as the square root of the variance,
is in the same units as the variable.

Why is the standard deviation so important? Many phenomena in life are “normally distributed”. A normal
distribution is characterized by a symmetric, bell-shaped curve, fully determined by its mean and standard
deviation. That is, if you assume a distribution to be normal, knowing the mean and the standard deviation
makes it possible to make probability statements. If length is normally distributed with a mean of 180cm
and standard deviation of 10cm, then we can deduce that 2.5% of the population is taller than 200cm.
Referring to the figure below: 95% of the population is in between 180cm minus twice the standard
deviation (10cm), and 180cm plus twice the standard deviation, that is between 160 and 200cm; 5% is
smaller than 160cm or taller than 200cm. Since the distribution is symmetric, 2.5% is taller than 200cm.
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99.7% of the data are within
3 standard dewviations of the mean
95% within

2 standard deviations
68% within
+— 1 standard —*
daviation

Figure 3.4: The Normal Distribution

This principle is very important, especially in inferential statistics, as we shall see. Often, our empirical
distributions are not perfectly normal, and therefore we want to test how likely it is that our sample is
drawn from a normally distributed population. One test is based on the shape of the distribution, as
revealed by its skewness and kurtosis.

Skewness is a measure of lack of symmetry. A distribution is symmetric if it looks the same to the left and
right of the center point. Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative
to a normal distribution. Distributions with light tails, tend to have a high peak in the center of the
distribution; a high kurtosis indicates a high peak.

For a normal (symmetric) distribution the skewness equals zero; the distribution is symmetrical around
the mean. Left and right tailed distributions have negative and positive skewness, respectively.

’ Mean
Median Median

Mode

Mode 1 - Mean )

' .

| I

1

1

1 1

1 I

1 I

1 1

1 |

Positive Symmetrical Negative
Skew Distribution Skew

Figure 3.5: Skewed Distributions

The normal distribution has a kurtosis of 3. However, some software packages like JASP redefine the
kurtosis as centered around zero, simply by subtracting 3. A positive (negative) kurtosis then indicates that
the actual distribution is more (less) peaked than expected in a normal distribution.

Positive Kurtosis

Negative Kurtosis
«—— Normal Distribution

Figure 3.6: Kurtosis

Going back to our data on dishes, the positive (right) skew and strong peak in dish1 can be illustrated by a
bar chart. Check the value for skewness and kurtosis in figure 3.2!
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Figure 3.7: Skewed Distribution

We compute (in Excel) a new variable for the average of the eight columns (or variables) dish1 to dish8.
Save the file (in CSV-format), and the new variable will be synced to JASP.

H o o - d
File Home Insert Pagelayout Formulas Data Review View Developer Help © Tell me what you W
K14 - S
A B C D E F G H ! J K L M
1 |dishl dish2 dish3 dish4 dish5 dish6 dish7 dish8 dishtot
2 | 2 2 3 2 3 1 1 3 213
3| 2 2 3 4 2 1 1 2 213
4 | 3 3 3 1 2 3 1 3 2.38
5 | 3 3 5 2 5 3 4 2 3.38
6 | 3 4 2 3 2 4 2 4 3.00
7 | 4 1 3 1 2 2 2 2 213
8 3 5 1 2 3 1 3 4 2.75
9| 2 1 3 3 3 3 3 3 2.83
10 | 2 3 2 1 2 4 4 3 2.63
11 | 3 4 3 3 3 2 2 1 2.63
12 | 3 2 3 5 3 2 3 3 3.00
13 2 3 1 2 1 3 3 2 213
14 2 2 2 2 4 4 2 4 2.75 1
15 | 3 1 1 5 2 3 1 2 2.25
16 | 5 2 1 3 2 3 2 4 2.75
17 | 3 3 1 4 3 2 3 2 2.63
18 | 4 1 2 4 3 4 2 1 2.63
19| 2 3 4 3 2 1 3 3 2.63
20 | 2 2 2 3 3 3 2 2 2.38
21| 1 1 4 2 4 3 2 3 2.50

Figure 3.8: Average Scores over 8 Dishes

According to output, dishtot is slightly skewed to the right, and the kurtosis is 0.35 (after deducting 3)
which is close to that of a normal distribution; the peak in the distribution is somewhat higher than
expected under a normal distribution.
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Figure 3.9: Distribution of dishtot

25
dishtot

In the histogram we can add a normal curve when using other packages like STATA to visually check how
close the actual distribution is to a normal distribution. JASP flexibly fits a kernel density function.

4
w

dishtot

Density

F

dishtot

Figure 3.10: Histogram, Fitted Normal Curve, and Kernel Density

The graph indicates that the distribution only remotely resembles a normal distribution. We have too few
observations on the left and too many on the right. These deviations may be coincidental. We have a small
sample of 20 respondents, and it may not be that unlikely that sampling 20 cases out of a normally
distributed population, results in the observed outcome. One test of normality is based on skewness and

kurtosis.

The test is not implemented in JASP, but there are many online tools that can help you out. One such tool
can be found here. You can copy your data (from Excel) and paste it in the box, and the results are
displayed. The interpretation is that, assuming that the data are sampled from a normal distribution, it is
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http://sdittami.altervista.org/shapirotest/ShapiroTest.html

not unlikely to get these results; we don’t have a strong reason to reject the null hypothesis of a normal
distribution.

@ Not secure | sdittami.altervista.org

Geimporteerd uitInt. [ Import to Mendeley Hll ChordsofLeonard ¢ W L1-WeerNieuwsen < Weka3-Data Minin  §p Pets LA Home [} Event History Analy Gujarat

Shapiro-Wilk Normality Test

Shapiro, S. S. and Wilk, M. B. (1965). “Analysis of variance test for normality (complete samples)", Biometrika 52: 591-611
Online version implemented by Simon Dittami (2009)

Paste data here (results below)
zixzs

2.125
2.375
3.375

3
2.125
2.75

2.625
2.625
2.625

2.125

2.25
2.75
2.625
2.625
2.625
2.375
2.5

Calculate | Clear all

Results:

-> Your data seems normal

Figure 3.11: Normality Test Using Online Tools

Landers discusses the mean, the median and the mode of a distribution, as measures of central tendency.
As we have seen, the mean is the sum of all the values divided by the number of values; the median is the
midpoint of the distribution; the mode is the value that occurs most frequently.

The mode is not very popular in social and economic studies. There are two reasons for not using the
mode. One important reason is that values may be unique. People’s incomes may be similar, but due to
many factors there may be only one person who earns USS 36,788.26. Maybe there’s not even one. The
mode is not useful in case of many unique values — which is typical for continuous variables. Another
reason is that a distribution may have two or more modes.

The mode is an option in JASP’s Descriptives. The mode for dishtot turns out to be 2.625. You can verify
that this is the case, by defining the variable as categorical. The program, for good reasons, does not
provide frequency tables for continuous variables! The mode here is equal to the median, and close to the
mean. However, for continuous variables, this is just coincidence. The mode is only meaningful for
categorical and ordinal variables. In one of our previous examples, it makes sense to use the mode for the
weekday on which Sally sells most of her pizzas.
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Figure 3.12: Checking the Mode of a Distribution

Let’s apply what we have learned to one of Landers’ data skill challenges.

3.2 Data Skill Challenge 1 to Chapter 3

Compute all appropriate central tendency and variability statistics for the data set shown below. These
scores are for an employee performance appraisal; responses are given by their supervisors. Each case
is a unique employee. Each dimension of employee behavior is assessed on a scale from 1to 7.

The data are stored in chapter3_dsc1.xIsx
Compute for each employee the average score on all four aspects (use Excel!).

Test if this average score is normally distributed.

EHHd9-~-|=

Home Insert Page Layout Formulas Data Review
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Figure 3.13 Data Skill Challenge

By now you should be able to read data entered in Excel-files, into JASP.



4 Probability Distributions

4.1 Normal Distributions and Z-scores

This chapter focuses on normal distributions and Z-scores.

The data set is described in Landers (page 96). The data set

(monthly sales) over the last six months.

& = =
Home Insert Page Layout Formulas Data Review
uj * Calibri 11 o AN gr; =W
Ba~
Paste B I U- - A E=E= e W
. = = - = ==
Clipboard Alignment
G6 - I
A B C D E F
1 nov
2 12 9 13 15 16 18
3 13 13 12 12 12 18
4 10 10 12 10 10 16
5 11 11 11 11 11 14
] 3 5 7 6 5 8
7 10 10 10 9 10 12
3 8 g 11 11 15 16
9 9 8 9 9 9 13
10 10 11 11 14 15 19
11 9 g 10 10 9 12
12 10 10 14 14 13 15
13 10 11 12 11 13 17
14 10 13 13 13 14 17
15 5 6 4 4 4 9
16 8 11 10 9 13 15
17 17 17 15 15 17 271
Figure 4.1 Part of the data used in this chapter

Files needed:
chapter4d.xlsx
chapterd.csv

contains data for employee performance

OK, some challenges: how many employees do we have in the data base?

A frequency table of any variable will reveal that the total number of employees is equal to the number
of valid plus missing cases, which is 55

Descriptive Statistics

July

Valid 55

Missing 0
Mean 9.745
Sid. Deviation 2.647
Minimum 3.000
Maximum 14.000

In which month are the average sales per employee at their highest?

What are the total sales, of all employees in August?
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It’s informative to have standardized values. Knowing that an employee’s sales in August were 16 units is
more informative if we know (i) the average sales in August of all employees; (ii) the standard deviation of
sales in August; and (iii) the type of distribution.

Economic figures (like sales) tend to be more or less normally distributed.

The normal distribution is a symmetric bell-shaped distribution that is characterized by its mean and
standard deviation (SD). We obtain the standard normal (or Z) distribution with a mean of 0 and an SD of
1, by transforming the original variable X using the formula:

X -X
2= "5p

Standard Normal (z) Distribution

34% 34%

13.5% 13.5%

2.35% 2.35%
<.15% .15%->

4 3 2 1 0 1 2 3 4
Standard Deviations

Figure 4.2 The formula for Z; and the Standard Normal Distribution

Standardized values can be easily calculated in Excel, as shown below. The data are in chapter4.xlsx.

H ©- B chapterd - Excel

File Home  Insert  Pagelayout Formulas Data Review View  Developer Help ,O Tell me what you want to do
H2 - Jfr | =(B2-B$58)/BS$59

A B C D E F G H 1 J K L M

1 Jjuly aug sep oct nov dec julyZ augZ sepZ octZ novZ decZ
2 12 9 13 15 16 18 D.8516. -0.2593 0.9941 1.3566 0.7603 0.6185
3 13 13 12 12 12 18 1.2294 1.1667 0.6587 0.4788 -0.0677 0.6185
4 10 10 12 10 10 16 0.0962 0.0972 0.6587 -0.1064 -0.4818 0.1767
5 11 1 11 11 1 14 0.4739 0.4537 0.3232 0.1862 -0.2748 -0.2651
53 10 12 10 12 14 17 0.0962 0.8102 -0.0122 0.4788 0.3463 0.3976
54 11 11 11 14 14 16 0.4739 0.4537 0.3232 1.0640 0.3463 0.1767
55 7 8 8 6 6 11 -1.0371 -0.6158 -0.6831 -1.2768 -1.3098 -0.9277
56 11 9 7 8 5 1 0.4739 -0.2593 -1.0185 -0.6916 -1.5168 -0.9277
57
58 |Mean 9.75 9.73 10.04 10.36 12.33 15.20
59 |standard deviation 2.65 2.81 2.98 3.42 4.83 4.53
60

Figure 4.3: Standardized values
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The normalized score for employee 1 in July, can be computed as his/her score in July minus the mean
score of all employees in July, divided by the standard deviation of scores in July.

g (122975
Julyzy = ——2e—=0.

For record=1 we see that the Z-scores are always positive (except for August), signaling that this employee
tends to perform above average.

Assuming that sales are normally distributed across employees, in each month, the value of Z informs us
about how the position of employee among his peers: Z-scores close to zero are about average, while Z-
scores far away from zero indicate very poor or very good performance. Absolute Z-scores of 2 or 3 are
quite exceptional.

More precisely, you can calculate the probability of the Z-score assuming that the distribution is normal.
You can (and should!) test the normality of the distribution (for example using the skewness and kurtosis
test discussed in the previous chapter). We will come back to it when discussing inferential statistics.

In the good old days, we had to look up the probabilities of Z-scores in tables like the one below. They
were (and still are) provided as annexes in statistical texts.

Example: Suppose you have just used the formula to calculate that the performance of one of your
employees in August, in terms of units sold, is Z=+2.36. From the table below, you conclude that the
probability of a Z-score that high, is only 0.0091 (or 0.91%); your employee is among the best
performers!

0.07 0.08 0.09

2 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
21 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146  0.0143
22 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113  0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
24 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
25 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
2.7 0.0085 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
29 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

Figure 4.4 The Z-table (Standard Normal Distribution)
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This table presents the area between the mean and the Z score . When Z=1.96, the shaded

area is 0.4750.

Areas Under the Standard Normal Curve

z 000 001

0 4

002 003 004 005 006 007 0.08 009

0.0  0.0000 0.0040
0.1 0398 0438

1.0

L1 3643 3665
12 3849 3869
13 4032 4049
L4 4192 4207
15 432 4345
16 4452 4463
17 4554 4564
1.8 4641 4649
19 4713 4719
20 42 4178
2.1 4821 4826
22 4361 4864
23 4893 4896
24 4918 4920
25 4938 4940

0.0080 0.0120 00160 0.0199 0.0239 0.0279 0.0319 0.0359
0478 0517 0557 0596 0636 0675 0714 0753
0871 0910 0948 0987 .1026 .1064 1103 .1141
1255 1293 1331 1368 1406 .1443 .1480 1517
1628 1664 .1700 .1736 1772 1808 1844 1879

1985 2019 2054 2088 2123 2157 2190 2224
2324 2357 2389 2422 2454 2486 2517 2549
2642 2673 2704 2734 2764 2794 2823 2852
2939 2967 2995 .3023 3051 3078 3106 3133
3212 3238 3264 3289 3315 3340 3365 3389

3461 3485 3508 3531 354 3577 3599 3621
3686 3708 3729 3749 3770 . .
3888 3907 3925 3944 3962 3980 3997 4015
3066 4082 4099 4llS 4131 4147 4162 4177
401 4236 4251 4265 4219 4292 4306 4319

4357 4370 4382 4394 4406 . 4 K
4474 4484 4495 4505 4515 4525 4535 4545
4573 4582 4591 4599 4608 4616 4625 4633
4656 4664 4671 4678 4686 4693 4699 4706
4726 4732 4738 4744 4750 4756 4761 4767

4783 4788 4793 4798 4803 4808 4812 4817

4999 4999 4999 4999 4999 4999 4999 4999

Source: Adapted by permission from Satistical Methods by George W, Snedecor and Willam G. Cochran,sixth edition
© 1967 by The lowa State University Press, Ames, lowa, p. 548.

Figure 4.5: Areas under the normal curve and Z-score

The interpretation is that the probability of a Z-score exceeding 2.36 is equal to 0.0091, or 0.91%. You can

deduce more information.

= Since probabilities always add up to 1 (100%), the probability of a Z-score less than 2.36 equals 1-0.0091

=99.09%.

= Since the norm:inl.distribution is symmetrical, the probability of a Z-score less than -2.36 is also 0.91%.
= And the probability of an absolute Z-score higher than 2.36 (that is, Z<-2.36 or Z>+2.36), equals 2*¥*0.91%

=1.82%.

With modern tools like Excel we don’t need those tables. We can ask Excel for probabilities for a Z-score

using the NORM.DIST() function.
For Z=2.36, we find:

H 9
File Home  Insert  Page Layout Formulas  Data Review  Vig
B7 - fe | =NORM.DIST(BS5,81,82,83)
A B C D E F

1 |Mean 0

2 |SD 1

3 | Cumulative TRUE
4

5z 2.36

6

7 |Probability 99.09%

3 s
9

Figure 4.6: Probabilities of Z-scores Using Excel
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NORM.DIST() returns the cumulative probability of Z-score. It is easiest to stick to cumulative probabilities
(by using the value TRUE, for the last of four parameters between brackets), since — as we have seen earlier
— a lot of other information can be simply deduced.

A related function is NORM.INV() which returns the Z-score related to a given cumulative probability.
For example, from NORM.INV() we can learn that 97.5% of the distribution has a Z-score higher than +1.96.

In an extended Excel worksheet:

| 9 :
File Home Insert Pagelayout Formulas Data Review  View Developer Help pTeII me what yol
C6 - Je =NORM.INV(C8,C2,C3)
A B C D E |
1 Computing probability given Z Computing Z given probability
2 Mean 0| 0
3 |sD 1 1
4 Cumulative TRUE
5
6 |Z
7
8 Probability
9
.
11
12
13

Figure 4.7: Probabilities and Z-scores Using Excel

From this we can deduce that 2.5% is on the left of -1.96. And therefore, 5% has a Z-score outside of the
range [-1.96; +1.96].

In a normal distribution, 5% of the observations have an absolute value of the Z-score higher than 1.96!

This is all quite handy. If a distribution is (or is assumed to be, or is approximately) normal, and we know
the mean and the standard deviation, then we can make statements about the likelihood of an outcome.

For example, you can calculate the probability of an employee having July sales exceeding 14 units. You
have to do it step by step.

= First compute the Z-score; for the Z-score you need the mean and the standard deviation for sales in
July. We have used Excel to compute these statistics. The Z-score of sales of 14 in July, can be computed
as 1.6071.

H 9~ s chapterdZ - Excel
File Home Insert Pagelayout Formulas Data Review View Developer Help O Tell me what you want to do
D68 - S
A B C D E F G H | J K L M N
1 july aug sep oct nov dec julyz augz sepZ octz novZ decz meanz
2 12 9 13 15 16 18 0.8516 -0.2593 0.9941 1.3566 0.7603 0.6185 0.7203
3 13 13 12 12 12 18 1.2204 1.1667 0.6587 0.4788 -0.0677 0.6185 0.6807
4 10 10 12 10 10 16 0.0962 0.0972 0.6587 -0.1064 -0.4818 0.1767 0.0734
54 11 11 11 14 14 16 0.4739 0.4537 0.3232 1.0640 0.3463 0.1767 0.4730
55 7 8 8 6 6 11 -1.0371 -0.6158 -0.6831 -1.2768 -1.3098 -0.9277 -0.9750
56 11 9 7 8 5 11 0.4739 -0.2593 -1.0185 -0.6916 -1.5168 -0.9277 -0.6567
57
58 Mean 9.7455 9.7273 10.0364 10.3636 12.3273 15.2000
59 sD 2.6473 2.8051 2.9812 3.4176 4.8307 4.5273
60
67 Sales July 14
62 |Z 1.6071
63 | Probability 94.60%
64

Figure 4.8: Example of Probability of a Z-score
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® |n conclusion, a value of 14 for sales in July is equivalent to a Z-score of 1.6071. Assuming a normal
distribution, 94.60% of all employees would have sales up to 14. Only 5.40% of all employees would
have sales of 14 or higher, which means that employees with this level of sales are performing very
well.

Self-test

As a challenge, sort the employees is ascending order of their performance in the 6 July to December!

The actual scores and the related Z-scores are in chapter4.xlsx. We have saved the relevant data in
chapterd.csv.

(R : d

File Home Insert Page Layout Formulas Data Review  View Developer Help ,O Tell me what you
H59 - S

A B C D E F G H | J K L M

T july aug sep oct nov dec julyZ augZ sepZ octZ novZ decZ meanZ
2 4 5 4 3 4 8 -2.1703 -1.6852 -2.0248 -2.1546 -1.7238 -1.5904 -1.8915
& 6 6 4 3 2 5 -1.4148 -1.3287 -2.0248 -2.1546 -2.1379 -2.2530 -1.8856
4 4 5 6 3 4 9 -2.1703 -1.6852 -1.3539 -2.1546 -1.7238 -1.3695 -1.7429
5 5 6 4 4 4 9 -1.7926 -1.3287 -2.0248 -1.8620 -1.7238 -1.3695 -1.6836
6 3 5 7 6 5 8 -2.5481 -1.6852 -1.0185 -1.2768 -1.5168 -1.5904 -1.6060
7 6 3 4 6 9 10 -1.4148 -2.3982 -2.0248 -1.2768 -0.6888 -1.1486 -1.4920
8 7 4 6 5 8 10 -1.0371 -2.0417 -1.3539 -1.5694 -0.8958 -1.1486 -1.3411
9 8 5 5 7 9 11 -0.6593 -1.6852 -1.6894 -0.9842 -0.6888 -0.9277 -1.1058
10 7 8 7 6 6 9 -1.0371 -0.6158 -1.0185 -1.2768 -1.3098 -1.3695 -1.1046
11 7 8 8 6 6 11 -1.0371 -0.6158 -0.6831 -1.2768 -1.3098 -0.9277 -0.9750
12 9 8 8 6 6 9 -0.281e -0.6158 -0.6831 -1.2768 -1.3098 -1.3695 -0.9228
13 11 g 7 8 5 11 0.4739 -0.2593 -1.0185 -0.6916 -1.5168 -0.9277 -0.6567

w1
(=]
=
w
=
w
=
s
=
S
=
~
%)
=)

1.2294 1.1667 1.3295 1.0640 0.9673 1.0602 1.1362
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Figure 4.9: Sorted Z-scores

The employees are sorted from weak to strong. Without employee names or IDs the information is not
helpful. But presuming the names are known, the HR manager can decide to give additional training to the
weakest performers. If there’s budget to train the weakest 10% and the distribution is approximately
normal, then the cut-off point would be at Z-scores of -1.28 (check this yourself!).

4.2 Data Skill Challenge 3

Given this data set: 5,5,7,2,3,4,4

a. Convert these values to Z-scores

b. What proportion of cases would you expect to fall above 4?
c. What score would be at the 75t percentile?

This exercise can be completed in Excel.

First we key in the data, and use Excel functions to compute the mean and the standard deviation. With
these statistics, we can add a column with Z-scores. Note that this Z-transformation leads to a variable
with mean 0 and standard deviation 1.

For Question B, we compute the Z-score of a score of 4, as -0.1782. We then use the NORM.DIST() function
to compute the cumulative probability of that Z-score. This probability is the probability that of a Z-score
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of up to -0.1782. The probability of a Z-score higher than -0.1782 the is the complement: 100% - 42.93% =
57.07%.

For question C we use the NORM.INV() function. The probability is now given as 75%, and the related Z-
score is 0.6745. We use this Z-score to compute the raw score, as:

RawScore = mean + Z * SD = 4.2857 + 0.6745 x 1.6036 = 5.3673

H 9 5

File Home Insert  Page Layout Formulas  Data Review  View|
H10 2 Je

A B C D E F

1 DSC DSCZ
2 5 0.4454
3 5 0.4454
4 7 1.6927
3 2 -1.4254
6 3 -0.8018
7 4  -0.1782
8 4 -0.1782
9
10 | Mean 4.28571429 0.0000
11|sD 1.60356745 1.0000
12
13 | Question B: Percentage of cases exceeding 4
14
15 |Score 4.0000
16 z -0.1782
17
18 |Probability 42.93% Cumulative probability of Z-scores < 4
19 57.07% Probability of Z-scores >4
20
21 |Question C: value at 75% percentile
22
23 | Probability 75%
24
25 |Z-score 0.6745
26

27 |Score 5.3673

This is not easy, admittedly. But getting acquainted with these fundamentals of statistics will make it easy
for you to understand and interpret the statistical output that comes with the techniques that we will
discuss!
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5 Sampling Distributions

Files needed:
chapter5.xlsx
chapter5_dsc.csv

5.1 How to Draw Samples?

Computers make it an easy task to sample records from your data set. Below we will use a fictitious data
set of 125 employees, and take a random sample of 50 of them.

In your data file listing the population or sampling frame, you can add a column with a random number.
You can then sort the data on that column (from low to high, or high too low) and use the first 50 records
of the sorted file as your sample.

Here, cases 116; 10; 70; etcetera have been sampled.

Note that we have hidden some of the rows for brevity; you can unhide them by highlighting rows 5
and 48, and then right-click your mouse to find the unhide option.

Since the records are numbered from 1 to 125, the mean record number in the population is (1+125)/2 =
63. The sample mean is quite close. Every time you randomly draw a new sample, the sample means will
be different, but quite close to the population mean.

H -
File Home Insert Page Layout  Formulas Data Revig
A125 - B3 12
A B C D

1 |data sample

2 116  0.0003

3 10  0.0044

4 70 0.0062

5 123 0.0229

48 4 0.3488

49 6 0.3491

50 13 0.3494 Sample Mean Standard deviation
51 69 0.3499 65.56 39.44
52 47  0.3663

53 7 0.3688

54 120  0.3794

55 3 0.3800
123 103 0.9498
124 56  0.9544
125] 12_ 0.9584 Population Mean Standard deviation
126 26 0.9864 63.00 36.23
127

Figure 5.1 Sampling

One reason for this type of exercise would be to check if the sample looks similar to the population from
which the sample was drawn, on key characteristics like gender or age.

5.2 Data Skill Challenge

Let’s extend the example of this chapter. In addition to the IDs of 125 employees, we now also have
information on the employee’s gender. In chapter5_dsc.csv, there’s a second column for the variable
female; this variable is a so-called dummy variable with values 0 or 1. It is good practice to name the
variable after what code=1 stands for, that is, 1=female (and 0=male).

The third column contains a random number between 1 and 10,000, generated by Excel. We have sorted
the data on random number from smallest to largest, and selected the first 40 records for our sample.
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We want to check if the sample of 40 is representative in terms of gender. This means that the

proportion of females is our sample is the same as (or not significantly different from) the proportion of
females in the population.

Try this for yourself, using the tools discussed above.

In the data set we have the variables female and sampled. The variable sampled is coded “y” for the 40
records with the smallest random numbers (in var sample). From the frequency table we see that the data
set contains 75 female respondents (female = 1), and 40 records which are sampled. Our hope and
expectation are that the sample is representative of the population, in terms of gender. That is, in the
sample we would expect around 6 out of 10 persons to be female.

chapter5_dsc* -
IR o |+
1 T I ., .
Mt - | LEE- [ X - Sa- | Jda
Descriptives T-Tests ANOVA  Regression Frequencies Factor
% ID Variables oK
% Random 9 .
L @ Female Descriptives
©b Sampled
Descriptive Statistics
Female Sampled
Valid 125 125
Missing 0 ]
Mean 0.600 0.320
Std Deviaion 0,492 0.458
Minimum 0.000 0.000
Split Maximum 1.000 1.000
r
Frequencies
Frequencies for Female
Frequency tables (nominal and ordinal variables) Female  Frequency  Percent  Valid Percent  Cumulative Percent
] 50 40.000 40.000 40.000
» |Plots 1 75 60.000 50,000 100.000
Missing 0 0.000
Total 125 100.000
P |Statistics
Frequencies for Sampled
Sampled  Frequency  Percent  Valid Percent  Cumulative Percent
0 85 68.000 68.000 68.000
1 40 32000 32000 100.000
Missing 0 0.000
Total 125 100.000

We can check this using <Frequencies><Contingency Tables>. From the output below we learn that 55%
of the sampled persons are female, which is slightly less than expected. We can use a statistical test to
verify that random sampling has not led to a sample that is significantly different from the population in
terms of gender. The formal test is a chi-square test (to be discussed in detail in chapter 11). If the
probability of this test statistic is less than 5% then we would start doubting the sampling procedure. Here,
however, the probability is 43,4%, implying that repeated sampling of 40 out of 125 using this procedure
would produce a test statistic this high in over 40% of the cases. Nothing to worry about!
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|| chapter5_dsc*

m&:mmun‘+
Mot - | L [ X S -

o

Descriptives T-Tests ANOVA  Regression  Frequencies Factor
BT Rows - Wiaximum 7,000 1000
\ Random > & Female
Frequencies
Frequencies for Female
Gellmrs Female  Frequency  Percent  Valid Percent  Cumulative Percent
>
& sampled 0 50 40.000 40.000 40.000
1 75 60.000 60.000 100.000
Missing 0 0.000
Total 125 100.000
Counts
I
Frequencies for Sampled
Layers Sampled  Frequency  Percent  Valid Percent  Cumulative Percent
L 0 a5 68.000 68.000 68.000
1 40 32,000 32.000 100.000
Missing 0 0.000
Total 125 100.000
v | Statistics
= 5
X [ Log odds ratio (2x2 only) .
Contingency Tables
[ x* continuity correction Confidence interval |95 %
[] Likelihood ratio [ vovk-Sellke maximum p-ratio Contingsncy Tablss
. - S led
Nominal Ordinal e
Female [ 1 Total
[] Contingency coefficient [1 Gamma B count 12000 18,000 50,000
D Phi and Cramer's V D Kendall's tau-b % within column 37647 % 45.000% 40.000 %
1 Count 53.000 22.000 75.000
%within column  62353%  55.000%  60.000%
¥ | Cells
Total Count 85.000 40.000 125.000
Counts % within column 100.000 % 100.000 % 100.000 %
Observed
[ Expected Chi-Squared Tests
Value df P
Percentages X 0613 1 0.434
N 125
[ Row
A Fabimn
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6 Estimation and Confidence Intervals

Files needed:
chapter6.txt
chapter6_example.xlIsx

6.1 Finding Confidence Intervals

In the previous chapter we have seen that samples can provide accurate information. But how accurate?
Even in relatively large samples you can be quite unlucky, and find sample statistics, like the mean, that
are way off the mark. That’s bad. But the point is, we don’t know. The reason for taking a sample is to
learn about the population mean, rather than to verify what we already know!

It is advisable to report your findings not as simple point estimates, but to provide additional information
about the error margins of your estimate. We use confidence intervals to make statements like: in repeated
sampling, in the majority of cases (say, 95% of the cases) the sample statistic will be in this interval. The
smaller the interval, the more accurate your estimate. The width of the interval depends on the sample
size, and on the variance of the variable in the population.

Example: Peter is interested in identifying the confidence interval (Cl) surrounding daily production
at his 12 plants. He recently received a report from HQ that production worldwide at each company
plant varies by 2,000 (standard deviation).

This is how you would calculate the Cls by hand (LB and UB are the lower and upper bounds,
respectively). The so-called standard error (o) is the accuracy of the sample mean, as an estimator
of the population mean. The larger the sample size (n), the more accurate the estimation.

02000 2000
X Jn J12 3.464102

=577.350205

o)
X
=14000-1.96(577.350205)
=14000-1131.606402
=12868.393598

=12868.39

= 14000 +1.96(577.350205)
=14000 +1131.606402
=15131.606402

=15131.61

For computing the 95% confidence interval (or equivalently a=0.05) the Z-score to be applied is 1.96.
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In most cases, the population variance is unknown. In those cases, we have to estimate the variance from
the data in our sample. For small samples and unknown population variance, we use the t-distribution
rather than the Z-distribution.

Applied to the data in chapter6.txt (note that the data are not “comma separated” but “tab delimited”;
JASP can read that format as well), we want to estimate 95%-confidence intervals for the production of
various items. In Descriptives we now ask for the standard error of the mean.

Descriptive Statistics

Nuts Bolts Screws Pins Washers Anchors Rivels
Valid 12 12 12 12 12 12 12
Missing 0 0 0 0 0 0 0
Mean 11508.9417 14000.917 10975.417 18013.832 6076.333 42348.082 3755.083
Std. Error of Mean 262.208 634.305 58.208 22774 86.885 559.769 535282

Figure 6.1: Standard Error of Mean, in JASP

The confidence interval for the production of nuts, is equal to
Clyues = Mean + toso;11) * SEmean

The value of tgsy: 11) can be obtained from the T.INV() function in Excel. The 11 is the so-called number of
degrees of freedom, which is the sample size minus 1. The t-value for t is 2.2010. The data and formulas
can be found in chapter6_example.xIsx.

H ©- :

File

B29

]
2
3
4
5
6
7
8
9

10
1
12
13

A
Mean
SE of Mean

Sample Size
DoF
Confidence

T-value

LB
UB

Home

Insert Page Layout  Formulas  Data Reviey

J
B C )

11,508.92
262.21

12

11

95%
97.50% One-sided

2.2010 Right-hand side

10,931.80
12,086.03

Figure 6.2: Obtaining the t-value, in Excel

The confidence interval then can be computed as 11,508.92 + 2.2010*262.21, or [10,931.80; 12,086.03].

This is equivalent to the results in Landers, who uses SPSS to do the same.

Verify for yourself the confidence intervals for the production of the other items.
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One-Sample Test

TestWalue=10
94% Confidence Interval of the
Difference
Mean
t of Sig. (2-tailed) Difference Lower Upper

Mean Daily Mut 43.892 11 .noo 11508.917 10831.80 12086.03
Production
Mean Daily Bolt 22.070 11 .noo 14000917 12604.62 15397.21
Production
Mean Daily Screw 188,555 11 .noo 10975417 10847.30 11103.53
Production
Mean Daily Pin 790875 11 .aao 18013.833 17863.71 18063.96
Production
Mean Daily Yasher £9.941 11 .noo GO07E.833 5885.60 6268.07
Production
Mean Daily Anchar 2,661 11 .noo 4848.083 3616.04 608013
Production
Mean Daily Rivet 7015 11 .aao 3755.083 2576.94 4933.23
Production

Figure 6.3: Confidence Intervals (Landers, using SPSS)
6.2 Data Skill Challenges
Test yourself:
Determine the critical Z-value for the following situation:
(a) 98% confidence; o unknown; n=31

You could use the statistical tables annexed in many traditional statistical textbooks. But the functions in
Excel are easier and more precise. A challenge is to be familiar with these functions!

In case the population standard deviation is not known, we use the sample standard deviation to estimate
the population standard deviation and we switch to the t-distribution. We use Excel’s T.INV() function,
and determine the degrees of freedom, which is 30 (31 minus 1). We conclude that the critical t-value is
2.4573 (compare Landers: 392).

Note that in an 98% confidence interval, we are looking for the t-values corresponding to the lower and
upper 1% of the distribution. The function (with 99%) finds the t-value for the upper 1%: 1% of the
distribution has a t-value beyond 2.4573. Since — like the normal distribution — the t-distribution is
symmetrical, we can deduce that another 1% has a t-value lower than -2,4573. In total then, 98% lies in
the interval from t=-2.4573 to t=+2.4573.

H -

File Home Insert  Page Layout  Formulas  Data Review  View D

B7 - fr | =T.INV(B5,B2)
A B C
1 Sample size 31
2  Degrees-of-Freedom (DoF; or DF) 30
3
4 Confidence 98% Two-sided
5 99.00% One-sided; righthand side
6
7 |z-value 2.4573]
8
9

Indeed, this is not easy to remember, if you don’t use it a lot. Even experienced researchers have to think
anew themselves every time they use these functions.

Let’s look at a practical example.

When looking through a report in Forbes you read about a survey of 240 CFOs, finding that on a 5-point
scale CFOs report that their organization’s financial health is 4.1 with a standard deviation of 0.4.

New/Advanced: What’s the margin of error for this mean?
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The standard error of the mean, can be computed as the standard deviation divided by the square root of
the sample size (see cell B6). The t-value for a 95% confidence interval are computed as before. Don’t
forget that the t-value is for the right-tail, so we have to plug in 97.5%; the other 2.5% are at the left tail.
Lastly, we can compute the lower and upper bounds of the interval (file chapter6_example.xlsx).

H -

File Home Insert  Page Layout Formulas Data R4
E12 o f

A B C

1 |Degrees-of-Freedom 239

2 |Probability 97.50%

3 |T-value 1.9699 =T.INV(B2,B1)
4

5 |sD 0.4

6 |SE Mean 0.02581989 =B5/SQRT(240)
7

8 |LB 4.0491 =B11-B3*B6
9 |UB 4.1509 =B11+B3*B6
10
11 |Mean 4.1

The margin of error is not a standard statistic, so we have to do some simple additional calculations to get
it. The margin of error is defined as half of the width of the confidence interval, divided by the mean. You
can use a traditional calculator, or use Excel: 1.9699*0.02582 / 4.1 = 1.24%. Our estimate is pretty
accurate.

We can now conclude that repeated samples of size 240 from the population of CFOs, in 95 out of
100 cases will produce a sample mean in the interval 4.049 to 4.151. Some researchers would say
that the probability that the population mean is in the stated interval, is 95% (.095) which is subtly
different from our correct interpretation!
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7/8 Hypothesis Testing & Z-tests; One-Sample T-tests

Files needed:
chapter8_1.xlsx
chapter8_1.csv
chapter4.xlsx

8.1 The One-sample Z-test

We combine chapters 7 and 8 of Landers since they are strongly related. Actually, both chapters are related
to chapter 6, on confidence intervals, as well.

When using confidence intervals, the question we ask ourselves is, suppose we keep on sampling
repeatedly, in which interval would our sampling statistic fall in 95% of all cases? For example, from an
opinion poll on political preferences we may conclude that an estimated 60% of the electorate would vote
for candidate A (and 40% for the only alternative, candidate B), with a 95% confidence interval of, say, 55%
to 65%.

In hypothesis testing we work the other way around. Here, we test the sample outcome against some null
hypothesis. If the null hypothesis would be that there is no overall preference for either candidate (both
get 50% of the votes), then we would reject that hypothesis at a significance level of 5%, based on our
sample data (since the hypothesized value 50% is well outside of our 95% confidence interval).

The data set that we will use for illustrating the concepts, is chapter8_1.csv.

mchamer&‘\
common | +
s Pl +
el - | LRE- [ X Se - | s
Descriptives T-Tests ANOVA  Regression Frequencies Factor

kindness compassion childcare ~

5490774 521772 60913

59.5535 64.3452 443588
56,6934 44.2304 50.5946
556747 55,9587 84.1579
37.7286 68.6936 479212
387953 39.3821 50.1766
56.1926 52,6338 68.721

79.6067 46,6443 67.6327

o | |~ o ulalw| N

57.761 52.2254 426264
10 56,1965 42,3304 771334
11559153 69.7692 61.7635
12 46,076 72.2562 48.0273
13 | 77.1271 41.3331 546724
14 1495355 55,5962 69,625

15 546305 60.7974 684411
16 |38.5776 56.3167 304908
17 1417106 60.8791 765182

777777

The description of the variables can be found in Landers, pages 187 and 188. In short: the data measure
three traits of the 27 tutors in a company that provides tutoring services.

. Kindness data are based on the MacMillen Kindness Inventory;
. Compassion is measured by the Cincinnati Index of Compassion; and
. Childcare reflects the scores of the Child Focus Survey.

All tests produce scores on a scale from 0 to 100.
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. The national average for the MacMillen Kindness Inventory is 45, with a standard deviation of 12
(based on a sample of 240,000 people). The standard deviation can be considered the standard
deviation in the population;

. The Compassion Index and the Childcare index have averages of 55 and 67, respectively, based on
very large samples; the population standard deviations are not known.

We want to test the hypotheses that the sample scores for our 27 tutors are higher than the national
(population) averages.

For kindness we can use a one sample Z-test, since the standard deviation in the population is known. The
best way is to use Excel as a statistical calculator, and follow the steps in Landers (page 195-197).

H 5" :

File Home Insert Page Layout Formulas Data Review View
Cc1 A I compassion

A B F G

1 kindness Kindness
2 49.0774
3 59.5535|Population
4 56.6934
5 55.6747|Mean 45.0000
6 37.7286|SD (known, from population) 12.0000
7 38.7953|SE Mean 2.309401
8 56.1926
9 79.6067 |Sample
10 57.7610|n 27
11 56.1965
12 55.9153 | Test statistic 5.485877
13 46.0760
14 77.1271|Probability 100.00%
15 48,5355 0.00%
16 54.6305
17 38.5776|Critical Z 1.644854
18 41.7106 95.00%
19 72.1567
20 68.8203|Cohen's D 1.06
21 67.0071
22 ©00.1705
23 49.4367
24 78.2006
25 56.8038
26 59.8232
27 76.3629
28 57.4316
29 | Mean 57.6691
30 |n 27
311sp 12.09625813

Figure 7&8.2: Z-test for Kindness

In the above figure we have computed the mean for kindness as 57.67 (rounded to two decimals) using
the AVERAGE() function in Excel. The sample mean of 57.67 is well above the mean of the population (45).

Since the standard deviation of the population is known, we can directly compute the standard error of
the mean, as 12 divided by the square root of the sample size (square root of 27), which gives 2.31 in cell
G7.

Standard Deviation 12
SEMean = = = 2.3094

JSample Size V27

The Z-value of our finding is therefore (57.67-45)/2.31 = 5.49. The cumulative probability of a Z-value of
5.49 is close to 100%; the probability of Z-value of 5.49 or higher is therefore effectively zero. We reject
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the hypothesis that our sample mean is equal to the population mean; our sample outcome is significantly
higher than the population mean.

Compare these results to page 197 in Landers!

We conclude that the (null) hypothesis that our sample mean is the same as the population mean is firmly
rejected. The Z-value is well above the critical value of 1.96 (for two-sided testing); since we are testing
whether the scores for our tutors are higher than for the population of tutors, a one-sided test is
appropriate.

Our report would read:

Ho: n<45

Hi: u>45
a=.05

Zritical = 1.645
Z=5.49, p<.05

First, we state the null hypothesis and the alternative hypothesis. The “interesting” hypothesis is our
alternative hypothesis that we want to test against the null hypothesis. Since we hypothesize that our
tutors are better than average, we use one-sided testing. The advantage of one-sided testing is that — by
ignoring the left part of the distribution — we have a higher chance of detecting a significant difference!

Our significance level is a=.05 which corresponds to 95% confidence. The alpha (a) level is the probability
of rejecting the null hypothesis when in fact the null hypothesis is true. We want this probability to be very
small. The value of .05 (5%) is commonly used, but you are free to be more or less strict. If you want to be
more certain that your conclusion of our tutors being kinder than average is true, you can raise your
confidence level and lower a, as a is equivalent to 1 minus the confidence level.

A shorter version of our conclusion would read: the null hypothesis is rejected (Z=5.49; P<0.05).

Some would report the critical value of Z, that is, the value above which the null hypothesis is rejected.
Since we use one-sided testing, we use the NORM.INV(95%,0,1) function in Excel, to get the Z-value below
which 95% (and beyond which the other 5%) of the distribution lies. 5% of the distribution has a Z-value
higher than Z=1.6449; the probability of an even higher Z-score, farther away from the mean, must be
smaller than 5%. We therefore reject the null hypothesis.

Since computers have no difficulty in computing the exact probability of Z-score, it has become less
common to report the critical value. The exact probability of Z-score of 5.4859 is, in two decimals, 0.00%,
and we can report that.

To be complete, we can also report the effect size. For one sample tests, we can compute Cohen’s d.

d = (x—p) _ (57.669—-45) — 1.06
o 12

Cohen’s d can be interpreted as follows:

Absolute value of d Size of effect
<0.2 Very small
0.2-0.5 Small
0.5-0.8 Medium
>.8 Large

Figure 7&8.3: Effect Sizes and Cohen’s D

The effect therefore is large.
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8.2 The One-Sample T-test

Below we test if the sample means of the variables compassion and childcare are significantly higher than
their population means.

The sample mean (55.1039) for compassion is not much higher than the hypothesized mean of 55. We can
therefore suspect that this difference is not significant.

The t-value is .0497, and from the output we can conclude that, when drawing samples of size 27 from a
normally distributed population, in no less than 48% of the cases we will have a t-value of .0497 or higher,
in other words, it is not that remarkable. Statisticians — at least in social and economic studies — draw the
line at 5%. If the probability of a t-value is 5% or less then we would start doubting the null hypothesis. But
here, in one-sided testing, the probability is 48%, and therefore we accept the null hypothesis that the
score on compassion in our example is smaller than or equal to score in the population.

H ©-

File Home Inset  Page layout Formulas Data  Review  View

1 compassion Compassion

2 52.1772

3 64.3452 Population

4 44.2304

5 55.9587 Mean 55.0000
6 68.6936 sD 10.8680
7 39.3821 SE Mean 2.091544
8 52.6338

9 46,6443 Sample

10 52.2254 n 27
1 42.3304

12 69.7692 Test statistic 0.049678
13 72.2562

14 413331 Probability 51.96%
15 55.5962 48.04%
16 60.7974

17 56.3167 Critical T 1.705618
18 60.8791 95.00%
19 57.5261

20 52.1845

21 65.9178

22 56.7928

23 56.7138

24 59.6930

25 41,6855

26 27.2895

27 65.5320

28 68.9015

29 Mean 55.1039

30n 27

31 sp 10.86798251

32

Figure 7&8.4: T-test for Compassion

For childcare the procedure is the same.
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File Home Inset Pagelayout fFormulas Data  Review View Developer Help O Tell me whatl

K19 i fr

A D E H | J K
1 childcare Compassion Childcare
2 60.9130
3 44,3588 Population Population
4 50.5946
5 84.1579 Mean 55.0000 Mean 67.0000
6 47.9212 sD 10.8680 SD 13.5784
7 50.1766 SE Mean 2.091544 SE Mean 2.613156395
8 68.7210
9 67.6327 Sample sample
10 42.6264 n 27n 27
1 77.1334
12 61.7635 Test statistic 0.049678 Test statistic -4.09007814
13 48.0273
14 54.6724 Probability 51.96% Probability 0.02%
15 69.6550 48.04% 99.98%
16 68.4411
17 30.4908 Critical T 1.705618 Critical T 1.70561792
18 76.5182 95.00% 95.00%
19 50.6784
20 61.5492
21 55.0277
22 39.1461
23 66.4430
24 50.2952
25 45.1559
26 32.1380
27 65.1569
28 51.0292
29 Mean 56.3120
30 n 27
31 5D 13.57835893

Figure 7&8.5: T-test for Childcare

Here we have to be careful. The t-value is quite high (in absolute terms), namely -4.09. We might conclude
that childcare in our sample is significantly different from the population, which is probably true.

However, we are testing, one-sidedly, the hypothesis that scores in our sample are higher than in the
population. The null hypothesis is (see Landers: 195) that the mean value is smaller than or equal to 67.
The alternative hypothesis is that the mean in our sample is higher than the national score. We don’t find
support for the alternative hypothesis (on the contrary, our sample score is well below the national
average!). In almost all samples of this size, the t-value will be higher than -4.09. We accept the null
hypothesis.

We can again compute Cohen’s d for effect size. But this time, we do not know the standard deviation in
the population. We can use the sample variance as an estimator of the population variance.

For example, for compassion we get the following.

_ (x-p) _ (55.1039-55)
¢ 10.8680

d = 0.01

As expected, a very small effect size.
8.3 Data Skill Challenge
Data Skill Challenge 1, page 217

Jill, whose data on used car sales we encountered in chapter 4, has decided to compare her employees’
December sales with average (mean) sales in her region, which she read from an online newspaper was
14. Conduct the complete hypothesis testing process with this data set!

Since we do not know the standard deviation in the population we have to use a T-test.

Let’s first compute a confidence interval.
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File Home Insert Page

$53 <

A G N

1 dec

2 18
3 18
4 16
5 14
6 8
7 12
8 16
9 13
10 19
53 17
54 16
55 11
56 11
57

58 Mean 15.20
59 sD 4.53
60 n 55

61 SEMean 0.610459

63 ClI

64 - 1B 13.9761
65 - UB 16.4239
66

67 | T(95%) 2.0049
68 97.50%

The 95% confidence interval [13.9761; 16.4239] just includes the hypothesized value (14) for December
sales, and therefore we can conclude that the observed value is not significantly different from the
hypothesized value. All data and formula are in chapter4.xlsx.

However, in hypothesis testing we work the other way around, and the formal procedure would use a T-
test.

a2

58 |[Mean 15.20
59 |sD 4.53
60 n 55
61 |SE Mean 0.61
62

63 |Cl

64 |- LB 13.9761
65 [- UB 16.4239
66

67 |T-value 2.004879
68 |DoF 54
69

70 |Population Score 14
71

72 | Test | 1.965735_'
73 |Probability

74 |- One-sided 2.72%
75 |- Two-sided 5.45%

-

Since the hypothesis is formulated in a neutral way (we compare our observations against a hypothesized
value), we use a two-sided test. An absolute t-value of 1.97 (t<-1.97 or t>1.97) or higher, has a probability
of 5.45%. This is just above the cut-off point of 5%, and therefore we accept the null hypothesis of no
difference.



If the test was one-sided (the alternative hypothesis states that our December sales are higher than the
population average), then we would reject the null hypothesis! In only 2.72% of all samples, will the sample
mean be this much higher than the population mean of 14.

Since one-sided testing is more likely to result in a significant difference, many researchers prefer one-
sided testing. However, there has to be a theoretical justification (for example, an intervention by lJill, like
a training program to her salespersons in order to boost sales). Two-sided testing is preferred by those
who are more conservative.

Data Skill Challenge 3, page 217/218
Larry runs a manufacturing company.

The most recent issue of a manufacturing trade magazine published an article stating that the average
number of industrial accidents for plastics manufacturers is 15 per year.

Larry wants to know whether his company has fewer accidents than the average for the industry.
The data for Larry’s company for the past nine years are presented in the table below.

Conduct the complete hypothesis testing process with this data set!

Year # of Accidents
1 13.25
11.30
9.40
12.80
11.00
10.00
10.50
12.75
9 11.50

Figure 7&8.6: Data Skill Challenge 3

0O NOU A, WN

By now it should be easy to perform this test. Note that the test is left-sided: we test the hypothesis that
accidents in Larry’s plants are below the industry average of 15.

H -

File Home Insert Page Layout Formulas

113

9.4

]
2

3

4 128
5 11
6

7

8

10

10.5

12.75

9 115

11 |Mean 11.38888889
12 |SD 1.330126352
13 |n 9
15 |SE Mean 0.443375451
17  Population 15

19 |Test -8.14458966

21 |Probability 0.0019%

The output shows the sample mean (11.39), which is well below the hypothesized mean of 15.
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The standard deviation of the population is not known, and estimated from the sample data. From the
estimated standard deviation, we can compute the standard error of the mean, by dividing by the square
root of the sample size.

The t-value then is the difference between the sample mean and the hypothesized mean, divided by the
standard error of the mean. This gives a t-value of -8.14. The probability of such a highly negative t-value,
is very low.

The difference is highly significant, using the left-sided test; the probability of a t-value as low as -8.14 is
close to zero. We reject the null hypothesis, and find support for the alternative hypothesis that Larry’s
plant is doing well in terms of accidents as compared to the industry.
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9 Paired and Independent Samples T-test

Files needed:
chapter9_1.csv
chapter9_2.csv

chapter9_dsc.txt

9.1 Introduction

Now that we have learned how to compare a sample result to a hypothesized value, a small next step is
to compare groups.

For example, we can compare the salaries of male and female employees in our organization and
see if there’s a statistically significant difference.

Another type of comparison would be to compare the performance of the employees in our
organization at two points in time, and see if there is a difference.

For comparing two groups, or comparing one group at two points in time, we use the T-test. Once you
understand the principle of the T-test, you can test more complex relationships using related techniques.
More complex relationships are, for example, comparisons between three or more groups; over three or
more periods in time; group comparisons over time; or add “explanatory” variables to the model.

But let’s start with the simpler situation. When making comparisons between two groups, we have to ask
ourselves whether the groups are independent (e.g. males versus females) or dependent (or matched or
paired, like the performance of the same employees at two points in time).

We will use the data set chapter9_1.csv to illustrate the T-tests. Below you find summary information on
the data.

There are variables for typing skills when hired and after 6 months; and the same for satisfaction. All the
information is available for men and women. Verify for yourself that there are 151 records in the data set.
The typing skills for the complete sample of 151 men and women have gone up from 68.70 to 71.09 (by
2.39 that is) over the 6 months period.

i chaptera_1

| [ common | +

ey - | - PBE- 2. S| &
Descriptives TTests ANOVA Regression Frequencies Factor

type_hire type_6mos satis_hire satis_6mos & gender & priorexp ~

'46 0746 67.2278 1.93956 1.44582 Male No
74.0659 78633 1.75007 3.12562 Female No
69.9656 745588 1.66707 147616 Male Yes
57.356 62.5977 3.10592 0.170012 Female Yes
68.1894 854832 2.19596 1.83355 Male No
703969 64.7532 5.40863 4.88378 Female No
784344 78676 3.72293 5.26257 Male Yes

487423 62.2652 3.01881 5.50823 Female No

ol | w|lo |w| s lw|[m|

&11073 ass71> 40590 7574 Eamala Vac

Figure 9.1: Data for Chapter 9

Descriptive Statistics

tvpe_hire fype_Bmos satis_hire safis_Gmos

Valid 151 151 151 151
Missing 0 0 0 0
Mean 63.696 71.085 07 3139
5td. Deviation 10,137 14.355 0.973 2.021
Minimum 39.370 27.026 0.439 0.000
Maximum 93.465 111.289 5.409 7.999
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Freguencies for gender

gender Frequency Percent Valid Percent Cumulative Percent

Female 7 50993 50993 50993
Male T4 49007 49007 100.000
Missing 0 0.000
Total 151 100.000

Freguencies for priorexp

priorexp Frequency Percent Valid Percent Cumulative Percent

No 79 52.318 52.318 52.318
Yes 72 47682 47682 100.000
Missing 0 0.000
Total 151 100.000

Figure 9.2: Descriptive Statistics for Data in Chapter 9

It should become second nature to ask basic questions about your data set, and answer them using the
basic commands in JASP. For example, you might be interested in the differences in typing skills of male
and female employees.

Descriptive Statistics

type_hire type_Bmos
Female Male Female Male
Valid 77 74 77 74
Missing 0 0 0 0
Mean 69.020 68.350 70.768 71.416
Std. Deviation 9,688 10.641 13.842 14.959
Minimum 48742 39.370 35.890 27026
Maximurm &7.419 93 465 101.748 111.289

Figure 9.3: Breakdown of Typing Skills by Gender

From this simple overview we learn many things. First of all, we have 151 records for both years. There
seem to be no missing data. The typing skills for male respondents were lower, when hired, but have
increased faster than for female over the 6 months.

9.2 Paired Samples T-test

The paired samples T-test compares two variables in the data set, in this case type_hire and type_6mos.
The two variables are matched: for each individual, the two variables measure the typing skills of that
individual at two points in time.

The results of the test are shown below.
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Wl chaptera 1+

Common | +

Ban - | LR [E- L% - Sz - | g

Descriptives T-Tests  ANOVA  Regression Frequencies Factor
Std. Deviation 9688 10.641 13842 14.959
type_hire type_hire  type_6mos oK Minimum 43742 30370 35800 27026
NS Maximum 87419 93465 101748 111289
satis_hire Le
satis_6mos
gendel Paired Samples T-Test
priorexp
Paired Samples T-Test
t of p Cohen's d
Tests Additional Statistics type_hire - type_Bmos -2913 150 0.002 -0.237
Note. Students ttest
Student [ Location parameter Note. All tests, hypothesis is measurement one less than measurement fvio.
[ wilcoxon signed-rank Confidence interval |95
Ermiems Assumption Checks
) . Test of Normality (Shapiro- Wik}
[ Confidence interval %
Hypothesis s w P
Descriptives
O type_hire - type_6mos 0992 0604
[ Descriptives plots Note. Significant results suggest a deviation from nomaiiy.

O Measure 1 > Measure 2 Confidence interval |95

® Measure 1 < Measure 2 [ Vovk-Sellke maximum p-ratio Descriptives

Assumption Checks. Missing Values Descriptives

N Mean SD SE
Normality @® Exclude cases analysis by analysis
type_hire 151 68 696 10137 0825
xclude cases listwise pe_bmos A x B
O Exclud listwi type_6i 151 71.085 14.355 1.168

Figure 9.4: Paired T-test of Typing Skills

The results of paired sample test are straightforward. The means are the same as in figure 9.3. The
difference of -2.39 is due to the fact that we test the first measurement against the second one. We can
do the opposite test, and will come to the very same conclusions — it’s just the mirror image. Since skills
are bound to improve, we would apply a one-sided test (Ho: typing skills when hired < typing skills after 6
months). The t-value of 2.91 has a probability of .002 (0.2%), and we reject the null hypothesis; skills have
improved, looking at all 151 employees).

Self-test

Check for yourself that you get similar results when first entering type_6mos followed by type_hire. Don’t
forget to change the hypothesis: Measure 1 is now hypothesized to be larger than Measure 2!

9.3 Independent Samples T-test
Let’s move on to testing differences between independent rather than paired samples.

Making use of the same data set, we may be interested in the difference between male and female
employees when it comes to typing skills, or the difference between employees with versus without prior
experience in typing. For the latter test, it seems reasonable to hypothesize that people with prior

experience have better typing skills especially at first (“when hired”); the differences may fade after 6
months of experience.

The results are shown below. Use <Independent Samples T-Test>, under the <T-Tests> tab.
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chapter9_1*

Common +

ot - | Lo gl

Descriptives T-Tests ANOVA

type_6mos
satis_hire
satis_bmos
&> gender

P

Regression  Freguencies Factor
Dependent Variables oK
type_hire

Grouping Variable
> & priorexp

Tests
Student
[ Welch

[] Mann-Whitney

Hypothesis
O Group 1 = Group 2
O Group 1 > Group 2
@® Group 1 < Group 2
Assumption Checks

[ Normality
[ Equality of variances

Additional Statistics
[1 Location parameter
Confidence interval (95
Effect size
[ Confidence interval %
Descriptives
[] Descriptives plots
Confidence interval |95
[ Vovk-Sellke maximum p-ratio
Missing Values
@ Exclude cases analysis by analysis

O Exclude cases listwise

type_hre - type_6mos  -2913 150 0.002

-0.237

Note_ Student’s t-test
Note. All tests, hypothesis is measurement one less than measurement two.

Assumption Checks

Test of Normality (Shapiro-Wilk)

w 3

type_hie - type_6mos 0992 0604
Note_Significant resulis suggest a deviation from normality

Descriptives

Descriplives
N Mean SD SE
type_hire 151 68696 10.137 0825
type_6mos 151 71.085 14.355 1168

Independent Samples T-Test

Independent Samples T-Test

t aof P Cohen's d

type_hire -3.545 149000 <001 -0.578

Note_ Students t-test
Note. For all tests, the altemative hypathesis specifies that group No
is less than group Yes.

Descriptives

Group Descriptives

Group N Mean SD SE
type_hire  No 79 66.005 10.108 1137
Yes 72 71.648 9379 1105

Figure 9.5: Independent Samples T-test of Typing Skills

Employees with prior experience have better typing skills at the moment of hiring (71.65 versus 66.01).

The difference in typing skills is highly significant. Since we have opted for one-sided testing, the
significance to be reported is p < .001. JASP does not provide exact probabilities, when the probabilities
are very small. But a probability of less than 0.1% is much smaller than our 5% benchmark.

For testing the difference between men and women, we do not have an a priori reason to hypothesize
that one group is more skilled than the other, so we use a two-sided test. We tick Group 1 # Group 2, as

our (alternative) hypothesis; the null hypothesis is that there is no difference.
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chapterd_1*

R e |+
T T +
i =
Bt - | L8 [ X Sg - -
Descriptives T-Tests ANOVA  Regression  Frequencies Factor
=
%, type_6mos Dependent Variables | oK
. . 8 Group Descriptives
% satis_hire % type_hire
. . - Group N Mean SD SE
% satis_6mos
- type_hire  No 79 66.005 10108 1137
& priorexp Yes n» 71648 9379 1105
Independent Samples T-Test
Grouping Variable Independent Samples T-Test
> @ gender t di p Cohen's d
type_hire 0400 143.000 0590 0.065
Tests Additional Statistics Note. Student's t-test
Student [] Location parameter
[ Welch Confidence interval |95 Assumption Checks

[ Mann-Whitney

Hypothesis
@ Group 1 = Group 2
O Group 1 > Group 2

O Group 1 < Group 2

Assumption Checks
Normality
Equality of variances

Effect size
[[] Confidence interval %
Descriptives
[ Descriptives plots
Confidence interval 95
[] Vovk-Sellke maximum p-ratio
Missing Values

® Exclude cases analysis by analysis

O Exclude cases listwise

Test of Normality (Shapiro-Wilk)

w 2

type_hire  Female 0979 0240
Male 0.087 05658
Note. Significant results suggest a deviation from
normality.

Test of Equality of Variances (Levene's)

F df o

type_hire  6.388e -4 1 0.930

Descriptives

Group Descriptives

Group N Mean sD SE

type_hire  Female Ll 69.020 9688 1104
74 68.359 10641 1237

Figure 9.6: Independent Samples T-test of Typing Skills

The difference in typing skills between the genders is quite small (69.020 versus 68.359). This difference
translates into a t-value of 0.400, which (at 149 degrees of freedom) is not significant. The p-value is the
probability of a t-value of up to 0.400 to occur assuming that there is no difference between the genders.
Since the probability>5%, we accept the null hypothesis (and reject the alternative hypothesis). We have
not found evidence in support of differences in typing skills between the groups.

Note: in research, avoid statement like “having found proof”. You cannot prove things. The data either
support your hypothesis or it doesn’t, but even in the case of strong support (low probability of the null
hypothesis being true), there is always some probability that you draw the wrong conclusion!

Self-test

Repeat the exercise for employee satisfaction. Has employee satisfaction changed over the six months
period? Is there a difference in satisfaction between male and female employees (when hired; and after
six months)?

Note that the output gives the effect sizes. Interpret the effect size!

9.4 Advanced: Using Regression Analysis for T-test

The T-test is just a special version of regression analysis that we will discuss in chapter 12. To be more
precise: the T-test is a special case of Analysis of Variance (ANOVA) which in turn is a special case of
regression analysis.

While the T-test is restricted to differences between two groups, ANOVA can be applied in situations of two
or more groups. ANOVA is a regression analysis with dummy variables as independent variables. While
regression analysis is limited to models with one dependent variable, more complex models with more than
one dependent or endogenous variables, can be estimated using structural equation modeling (SEM). The
question why statisticians still use the T-test and ANOVA for these special cases rather than use the parent
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technique in the hierarchy (SEM), is not easy to answer. One reason is familiarity with the T-test, and the
ease of interpretation. A second reason is that ANOVA and regression analysis have been developed in
separate disciplines. While ANOVA is popular in psychology where researchers use experiments, regression
analysis is more popular among economists who cannot make use of experimental designs. A third reason
is that the T-test comes with options that are not implemented in higher order techniques. Still, it is good
to realize that the techniques are hierarchically related.

-— L

Figure 9.7: A Hierarchy of Techniques

A regression model is a model in which one or more independent variables (or predictors) are used to
explain (or predict) the dependent variable. In the formula (cf. Landers, page 337) typing skills as the
dependent variable, would be represented by y, while the grouping variable (let’s take prior experience) is
represented by the independent variable x.

Dummy coding: The important point is that we cannot use just any coding scheme for the grouping
variable; it has to be 0 and 1! For two groups, that’s just enough. We will use the code 0 for no prior
experience, and the code 1 for prior experience. We call this “dummy” coding: prior experience is
now a dummy (dichotomous, or 0/1) variable. But there’s nothing dumb about it, it is widely used by
researchers. In addition, it’s pretty flexible since we can use it in case of three or more categories too
(as we will explain in the next chapter on ANOVA). The rule is that you need one dummy variable in
case of two categories, two dummies in case of three categories, or in general, you need (k-1)
dummies in case of k groups.

The reason to explain a T-test using regression is twofold. First, we want to show you that indeed the T-
test and the regression model with a dummy variable do generate the same results. And secondly,
regression provides us with a measure called R? the coefficient of determination. The square root of R% s,
of course, R which is a correlation coefficient. The correlation coefficient R is often used as a measure of
the effect size. Nowadays, in academic publications, you are requested to report effect sizes.

Effect size. To understand the importance of effect size, think about the following example. In
anticipation of the presidential elections in the US, you ask a small sample of people whom they will
vote for. Out of 20 people, 12 say they will vote for the democratic candidate, and 8 for his republican
rival. The difference (60% versus 40%) is quite large. The sample however is too small to draw hard
conclusions. In short: the effect is large, but the difference is not significant. As the elections are
nearing, you decide to increase your sample, from 20 to 10,000. This time the difference is much
smaller (52% versus 48%). The “effect” is much smaller but the small difference may very well be
significant (it is unlikely to get this result if the preferences in the population are 50/50).

Let’s use regression analysis, to see if typing skills differ between employees with and without experience
(when hired). We use chapter9_2.csv which is a subset of chapter9_1.csv, but with an added column
(priorD) which is dummy-coded (0, if priorexp is “No”; and 1, if “Yes”). See below.

65



% type_hire | bpriorexp | ‘priorD

1 |46.0746 No 0
T 74,0659 No 0
T 69.9656 Yes 1
T 57.356 Yes 1
T 68.1894 No 0
T 70.3969 No 0
T 78.4344 Yes 1
T 487423 No 0
T 61.1972 Yes 1
? 64.4039 Yes 1

Figure 9.8: Data in Chapter9_2, with Dummy Coding

For regression analysis, just click on the <Regression> tab, and define the dependent and independent
variable. The output provides the same information as the T-test but in a different format. Take some
minutes to study the contents of figure 9.9!

The intercept, is the mean value of the dependent variable if the independent variable equals zero. That is,
it gives us the typing skills for the group with no prior experience. The value is 66.005, the same as we have
seen before. The “effect” of having prior experience is the (unstandardized) coefficient of priorD. The
coefficient of 5.643 is the exact difference between the mean typing skills of the group with prior experience
versus the group without. Check this for yourself! The coefficient comes with a t-value of 3.546, identical
to the t-value we found when applying the T-test.

Ml chapter 2+

|+
la i [ % Sa Wi
B v B 7 v = - v
Descriptives T-Tests  ANOVA  Regression Frequencies Factor
~ Yes 72 47882 47882 100.000
& priorexp Dependent Variable OK Missing 0 0.000
> x type_hire Total 151 100.000
Method |Enter =
Frequencies for priorD
Covariates -
priorD. Frequency Percent Valid Percent Cumulative Percent
> | | & prioD
0 7 52318 52318 52318
1 2 47.682 47682 100.000
Missing o 0.000
Total 151 100.000
WLS Weights (optional) Linear Regression
>
Model Summary
» [Model Wode! R R AdusiedR®  RMSE
1 0.279 0.078 0.072 9.768
v |Statistics
Regression Coefficients
ANOVA
Estimates Model fit
Model Sum of Squares af Mean Square F P
D CoriEEre MERES D RenEEimge 1 Regression 1109.453 1 1100.453 12572 <.001
Descriptives Residual 14215622 149 85.407
Interval |95 Total 15415.076 150
[ Part and partial correlations.
[] Covariance matrix [ Collinearity diagnostics Cosficients
Residuals Model ‘Standard Error t P
1 {ntercept) 66.005 1.099 60062 <.001
[ Durbin-Watson priorD 5643 1.591 0.279 3546 <001
[ Casewise diagnostics
Descriptives
Outliers outside 3 standard deviations N Mean o) SE
Hez= type_hire 151 6a6% 10037 0825
priorD 151 0.477 0.501 0.041
» Tentinne

Figure 9.9: T-test Using Regression Analysis

While the T-test computes Cohen’s D as a measure of effect size, here we have R (0.279).
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The interpretation of R as effect size is that an R of 0.1 is a weak effect; 0.3 is a medium affect; and 0.5 is a
strong effect. Here, with R=0.279, we have a (weak to) medium sized effect. Cohen’s D of around 0.6 would
lead to the same conclusion.

9.5 Data skill challenge

A regional manager implements a policy change for stores in his region (region A) to begin greeting
customers whenever they are standing within a 3-meter distance in the store. After the policy has been
in place for one month he compares average customer satisfaction for his 10 stores (region A) with the
average customer satisfaction in region B. Customer satisfaction is measured on a 1-5 scale with 1 being
“very unsatisfied” to 5 being “very satisfied”. He expects that his stores (region A) will have higher
customer satisfaction ratings compared to Region B.

Below are the data. Read them into a data file!

(a) Calculate the mean customer satisfaction in both regions.

(b) Test whether customer satisfaction differs by region.

(c) Calculate the effect size.

(d) Use both a T-test and regression analysis with a dummy variable for region.
Mean customer satisfaction for stores 1-10 in Region A: 4,4, 3,5, 3,4,4,5, 3, 2.
Mean customer satisfaction for stores 1-10 in RegionB: 3,2, 1,4, 3, 3,4, 5, 2, 3.

n chapter9d_dsc*

m.COmmon|+
hat - | 8. [ L%

Descriptives T-Tests ANOVA  Regressic

&cs |ﬁregion |‘regionD |
1 EA 0
74 A 0
?3 A 0
TS A 0
TS A 0
?4 A 0
74 A 0
TS A 0
TE A 0
;2 A 0
73 B 1
;2 B 1
;1 B 1
74 R 1

Figure 9.10: Data Skill Challenge Data
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The T-test is easy enough:

chapter9_dsc*

m Common ‘ ap

I 3 i .
I]m - I: = Ii: - l, - + - P
Descriptives T-Tests ANQVA  Regression  Frequencies Factor
Descriptive Stafistics
& regionD Dependent Variables OK -

&

Grouping Variable

@ region

Tests

Student
Welch

[] Mann-Whitney

Hypothesis
@ Group 1 = Group 2
O Group 1 > Group 2

O Group 1 < Group 2

Assumption Checks

[] Normality
Equality of variances

Additional Statistics
[ Location parameter
Confidence interval |95
Effect size
[] Confidence interval %
Descriptives.
[[] Descriptives plots
Confidence interval 95
[ Vovk-Sellke maximum p-ratio
Missing Values
@ Exclude cases analysis by analysis

O Exclude cases listwise

Valid

Missing
Mean

Std. Deviation
Minimum
Maximum

Independent Samples T-Test

Independent Samples T-Test

Test ‘Statistic af P Cohen's d
cs Student 1.481 18.000 0.156 0.662
Welch 1481 17347 0.156 0.662
Assumption Checks
Test of Equality of Variances (Levene's)
F dr b
cs 0018 1 0894
Descriptives
Group Descriptives
Group N Mean SD SE
cs A 10 3.700 0.949 0.300
B 10 3.000 1.155 0.365

The scores for Region A are higher, probably due to the policy intervention. However, the p-value related
to the t-value of 1.48 is above 5% (.0779, or 7.79%) and therefore we retain the null hypothesis.

Let’s see how to do the same using regression analysis. We need to use the dummy variable regionD.

Il chapterd_dsc

R o |+

1 P - "
W - | L2 B L2 S|
Descriptives T-Tests  ANOVA  Regression Frequencies Factor
& region Dependent Variable oK o 0018 1 0634
P
Method | Enter - Descriptves
Covariates
Group Descriptives
P || & regionD Group N Mean S0 SE
o A i 1700 0848 0300
g 10 3000 1155 0365
Linear Regression
WLS Weights (optional) 9
»
Model Summary
S e Madel R R Aduted R RMSE
1 0.330 0.108 0.059 1087
* | Statistics
v
Options ANOVA
+ | Assumption Checks Model Sum of Squares o Mean Square F )
1 Ragression 2450 2450 2104 0156
Resiiua 20.100 1 107
Total 22550 19
Coeficients
Model Unstandardized _ Standard Error__ Stondarozed ] [}
1 ntercept) 1700 0334 1072 < 001
regionD -a700 0473 -0330 1481 0.156

We leave it to you to find the key statistics, and compare them to the T-test.

In addition to the non-significant difference, we can also report the effect size: The square root of R?, is
.33, which is a medium effect size. You notice that insignificant effects, can still be classified as medium!
Effect size is simply a different concept than significance!

One of the reasons to still use the T-test even though it’s just a special case in a hierarchy of techniques,
are the options that you can use in case assumptions are violated. One of the assumptions is that the
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variances in the two groups are the same. You can use a so-called Welch correction if the assumption of
equal variances does not hold. We have added the Welch-correction in the T-test.

The changes are minor due to the fact that the variances are in the same league. The Welch formula makes
a correction in the degrees of freedom, which then translates into a different t-value and p-value.
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10 Analysis of Variance

Files needed:

chapter10.csv
chapter10_dummy.csv
chapter10_dummyExcel.xlsx
chapter10_dsc.xIsx
chapter10_dsc.csv

10.1 Introduction

Now that you are familiar with the T-test, and you understand that the T-test is just a special case of
regression analysis, ANOVA shouldn’t pose a problem. Despite its somewhat confusing name (analysis of
variance) ANOVA is an extension of the T-test analysis applied to two or more groups.

ANOVA tests whether the means of all the groups are the same.

In the same vein, ANOVA too is related to regression analysis: where we used a regression model with one
dummy variable in a T-test for two groups, we use a regression model with two or more dummies in case
of three or more groups.

Let’s look at the example used by Landers. A company has designed four websites and - using an
experimental design - has recorded how many seconds the respondents spent on these websites. The main
question is, is there a difference in the time spent on each of these websites?
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1 |Design D 71

2 |Design D 62

3 |DesignC g6

4 |Design B 115

5 |Design B 86
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Figure 10.1: The Data for ANOVA

A boxplot is a nice way to look at the distributions of the time spent on websites, broken down by design.
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Descriptives T-Tests ANOVA  Regression  Freguencies Factor
Variables oK Results
> @0 seconds
Descriptives
Descriptive Statistics
seconds
Design 4 DesignB  DesignC  Design D
Valid 5 6 5 5
Missing 0 0 0 0
Mean 65.400 106167 77.400 60.333
Split Std. Deviation 7.021 12891 27.070 8756
Minimum 55.000 86.000 37.000 48.000
> & webdesign Maximum 72000 120000 108.000 71.000

Plots

[ Frequency tables (nominal and ordinal variables) Boxplots

¥ |Plots seconds

[ Distribution plots 120
[ Correlation plot 100
Boxplots
[ Label Qutliers
o BB %
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[ Jitter Element 20

seconds

Boxplot Element
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| | ] ]
Design A Design B Design C Design D
b | Statistics webdesign

Figure 10.2 Boxplot

The graph and the output show that the mean of design B is, with 106 seconds, well higher than the means
for the other designs. The horizontal lines within the four boxes of the boxplot represent the medians
(rather than the means). The boxes themselves contain “the middle half” of the observations for each
group — which is a bit tedious with groups of 5 respondents. The middle half for design B has no overlap
with any of the other middle halves; however, designs A and D do overlap, in terms of time spent.

Now that we have a bird’s eye view of the differences, we can use ANOVA to test whether the differences
are significant. ANOVA tests whether the time spent on these websites is the same. But it may be that
while (like here) the answer seems to be no (B is well higher than the rest), still some of the groups are
quite similar. To find out we need an additional test that tells us in “pairwise” comparisons, which groups
differ from the others!

10.2 ANOVA

The ANOVA can be obtained by clicking the <ANOVA> tab. We have ticked the option Scheffe, along with
some other options, for multiple comparison tests.
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Descriptives T-Tests ANOVA  Regression  Frequencies Factor
¥ | Post Hoc Tests. ~
| oK ANOVA - seconds
webdesign Cases __sum of Squares af Wean Square F P
webdesign 7428.024 2.000 2476.008 10263 <.001
> Residual 4342.567 13.000 241254
Note. Type Il Sum of Squares
Effect size ANOVA
Correction
Tukey ANOVA - seconds
Cases Sum of Squares di Mean Square F P
Scheffe
webdesign 7423.024 3.000 2476.008 10.263 <001
Bonferroni
Residual 4342.567 13.000 241254
[ Holm Note. Type Ill Sum of Squares
¥ | Descriptives Plots
Post Hoc Tests
¥ | Additional Options
Post Hot Comparisons - webdesign
Il s Mean Difierence SE t Cohen's d  Puukey Pecnere Pront
webdesign Design A DesignB -40767 9.405 -4334 -3814 0.002 0.004 0.002
Design © ~12.000 9824 -1222 -0.607 0621 0689 1.000
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[ Compare marginal means to 0 Descriptives
Confidence interval adjustment [None Descriptives - seconds
§ webdesign  Mean sD N
Display
Design A 65.400 7.021 5.000
Descriptive statistics Design B 106.167 12.891 6.000

Design C 77400 27070 5.000
[ Estimates of effect size Design D 60.333 8.756 6.000

partial n* | | w®

Figure 10.3 ANOVA

In the output, we find the overall test. The F-test, with an F-value of 10.263 (and 3 and 18 degrees of
freedom), rejects the hypothesis that all means are the same; the probability is less than 0.1%. We report
that F(3, 18) = 10.26; p<5%.

From the descriptives (and our boxplots) we see that design B outperforms all other designs. The
hypothesis that all means are the same is firmly rejected.

The output contains pair-wise comparisons. We have just learned that not all means are the same. But the
more relevant question is, which means differ from one another?

With 4 websites we can compare 6 pairs: Ato B, C and D; that makes three; B to Cand D; and Cto D, that’s
six in total. You can compute the number of pairs as %2*k*(k-1), with k representing the number of groups.
Here we have %:*4*3 = 6.

The idea behind multiple comparison tests is that when making several pairwise comparisons we are
capitalizing on chance. We call differences significant if the probability of our test-statistic - under the
assumption of no difference in the population - is smaller than 5%. That is, in repeated testing we are
bound to be wrong 5% of our trials.

Suppose we make 6 comparisons between groups that in reality do not differ from another. Since
we are testing with 95% confidence, the probability that we are right is 95% for each of the 6 trials.
But with 6 comparisons, the probability that we make at least one mistake equals 1 minus the
probability that we are right all the time: 1 — 0.95° = 1 — 0.74 = 0.26. The chance that we make at
least one mistake, increases with the number of trials!

Multiple comparison tests correct for that by being stricter. There are several kinds of corrections, one of
which Scheffe. All corrections have their pros and cons, but the results are quite robust. You can try various
corrections to check if the findings are consistent.



In the output there’s a matrix in which A (in the first column) is compared to B, C and D; next, B is compared
to C and D; and finally, C to D. Although overall the ANOVA found that not all groups (websites, here) are
the same, the only significant differences (based on Scheffe corrections) are between A and B; and
between B and D. The differences between all other combinations of websites are not significantly
different from zero, at the 5% level of significance.

10.3 Extra: ANOVA via Regression Analysis

Since ANOVA is a special case of regression analysis, we can use regress with dummy variables to
accomplish the same. In the T-test we examined the differences between two groups. In ANOVA we use
two or more groups. Applying regression to our example with four groups, we need three dummy variables.
The group that serves as the base or reference group will have a code of zero on all three dummies.

Table 10.1: Scheme for dummy coding, for our four web designs

Design Dummy 1 (design B) Dummy 2 (design C) Dummy 3 (design D)
A (reference group) 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1

The data are in chapter10_dummy.csv.

If you recall the use of regression for the T-test, you can interpret the key statistics. The constant term _cons
is the mean of the reference group (design A) which is 65.4. Seconds spent on design B exceed design A by
40.77 seconds: 65.400 + 40.767 = 106.167. The difference is significant (t=4.33; p<0.001). And so on. The
F-statistic for the regression is the same as for ANOVA (F(3, 18)=10.263; p<0.001).

The big disadvantage of using regression analysis in JASP, is that we don’t have all pairwise comparisons.
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Total 11770591 21

* |Model

» | Statistics Mode! Unstandardized__Standard Error t 3
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Figure 10.4 ANOVA Using Regression Analysis




10.4 Data Skill Challenge

The company in our example has decided to run a second wave of tests, keeping designs B and C but
adding designs E, F, G and H. The data are in the table below.

(a) Read the data in a data file (note that the lay-out as below is not appropriate!)
(b) Present overviews using descriptives and boxplots
(c) Conduct the full hypothesis testing procedure and draw conclusions.

(d)  Which designs are significantly different from other designs?

Design B Design C Design E Design F Design G Design H
110 94 103 81 56 140
86 84 141 79 60 115
97 116 107 70 80 130
118 65 113 57 57 146
106 35 93 93 55 109

88 97 126

Figure 10.5: Data for Data Skill Challenge

The data, for your convenience, are stored in chapterl0_dsc.csv. You can copy the data from figure 10.5, and paste
them into Excel. For analysis in JASP, you have to rearrange the data in two columns, one for seconds, and one for
design. Next, save the file in CSV-format (we have done that for you), and read the data in JASP.

n chapter10_dsc*

Uad - | B2~ [

Descriptives T-Tests ANOVA
%Seconds ‘ ﬁDesign | -~

1 {110 B

T 86 B

T 97 B

T 118 B

T 106 B

T 94 C

T 84 C

T 116 C

T 65 c

F 35 c

T 88 c

? 103 E

? 141 E

I 107 E

? 13 E

? 93 E

T 97 E

; a1 F
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Always describe the data, to get a good feel of the data, before performing advanced analyses like ANOVA. From the
descriptives, it seems that design H is doing better than all others. Design G is doing poorly. But are the differences
significant, that is, can we draw hard conclusions?

Descriptives v

Diescriptive Statistics

Seconds
B C E F G H
Valid 5 6 i} 5 5 6
Missing 0 0 0 1 0 0
Mean 103.400 80.333 109.000 76.000 §1.600 127.667
Std. Deviation 12.321 27.645 17.205 13.416 10.455 14.180
Minimum 86.000 35.000 93.000 57.000 55.000 102,000
Maximum 118.000 116.000 141.000 93.000 &0.000 146.000
Plots
Boxplots
Seconds
160
1404 .
120
G
c 100+
a
@ 80— .
w
60 (=
40 .
20~
| I | | ] I
B C E F G H
Design

From the post-hoc multiple comparison tests, it turns out that H is not significantly better than B and E. Design H is
outperforming designs C, F and G. Design G is not significantly worse than design C and F. And so on.



ANOVA

ANCOVA - Seconds

Cases Sum of Squares df Mean Square F p
Design 16581.176 5.000 3316.235 11.094 =001
Residual 8071.067 27.000 208.928
Note. Type 1ll Sum of Squares
Post Hoc Tests
Post Hoc Comparisons - Design
Mean Difference SE t Cohen's d Prukey Pzchefie Prant

B C 23.067 10.469 2203 1.040 0.269 0.453 0.544
E —5.600 10.469 -0.535 —0.368 0.994 0.998 1.000
F 27.400 10.935 2.506 2127 0.158 0311 0273
G 41.800 10.935 3823 3658 0.008 0.031 0.011
H -24 267 10.469 -2.318 -1.813 0221 0.396 0.424

C E -28.667 9982 -2.872 —1.245 0.076 0.181 0.118
F 4.333 10.469 0.414 0.193 0.998 0,998 1.000
G 18.733 10.469 1.789 0.861 0.489 0.671 1.000
H -47.333 9982 -4.742 -2.154 =001 0.004 =001

E F 33.000 10.469 3.152 211 0.041 0.113 0.059
G 47.400 10.469 4528 3248 0.001 0.007 0.002
H -18.667 99582 -1.870 -1.184 0.441 0.629 1.000

F G 14.400 10.935 1.317 1.197 0773 0.880 1.000
H -51.667 10.469 -4935 -3.732 =.001 0.003 =.001

G H -66.067 10.469 -5.310 -5218 = 001 = 001 = 001

Note. Cohen's d does not correct for multiple comparisons.
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11 Chi-Squared Tests of Fit

Files needed:
chapterll_example.xlsx
chapterll.csv
chapter11_dsc.csv
chapterll_EXTRA.csv

11.1 Introduction

In the previous chapters we have looked at situations in which the dependent variable is measured on an
interval or ratio scale.

Interval or ratio scales give rich information. Income, for example, is measured on a ratio scale. A
person earning 1,000 € earns twice as much as a person earning 500 €.

Ordinal scaled data contain less information. Suppose we use scores of 1 to 5 to measure overall job
satisfaction, an employee with a score of 4 is quite satisfied, and more satisfied than an employee
with a score of 2 — but not necessarily twice as satisfied.

In nominal scaled data, numbers (codes) are meaningless. In previous examples we have use dummy
coding for gender, but males and females can be coded with any by itself meaningless number (0
and 1; or 1 and 2; or 11 and 99) as long as we are to distinguish them as groups.

Dependent (interval or ratio scaled) variables were “explained” by independent variables that were
measured as “nominal” variables (groups), like in T-tests and in ANOVA.

In many cases we want to examine relationships between variables that are all measured on a nominal
scale, that is, variables that just categorize cases or respondents into groups. Examples are:

= Political preferences (you can vote for one out of many parties; one could argue that the parties are on
a scale that ranges from the extreme left to the extreme right but in principle the parties are just
categories that you can vote for — or against);

= We may be interested in the relationship between gender and wearing glasses. Male and female, and
wearing glasses or not, are examples of groupings.

Our interest then is in count data: how many people prefer each of the parties? How many men and how
many women (as proportions of the total) are wearing glasses? Is gender related to wearing glasses?

11.2 The Distribution of One Nominal Variable

Let’s look at the sample. The numbers are the same as in the Landers example on page 301 on chewing
gum but we switched to a topic that’s harder to chew: politics.

Political parties Votes (in Sample of 33) Hypothesized Previous Election
Liberal Party 10 1/3 (33%) 2/5
Labor Party 14 1/3 2/5
Nationalist Party 9 1/3 1/5

Figure 11.1: Example of Count Data

In figure 11.1 we see that in a sample of 33 voters, most interviewees prefer the Labor Party. Statistically,
we can determine how likely the sample outcome is, under the null hypothesis that there are no
differences in the population. Or we can compare the results to the outcomes of the previous election,
and wonder if things have changed.
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The chi-square statistic is based on the differences between observed (O) and expected (E) counts. The
larger the differences, the higher the statistic. In the formula, the differences are squared, which sees to
it that the negative and positive differences always become positive and don’t cancel out. Since large
samples will produce bigger differences, we compensate for that by dividing the squared differences by

the expected counts.
. 2 (0 — E)?
Chi Square = B

The chi-square statistic comes with a number of degrees of freedom (DoF). For three groups (like here),
the DoF is equal to k-1=2; for a r*c table, the DoF is equal to the (r-1)*(c-1), where r and c are the number
of rows and columns. For a 2*2 table, the DoF is 1.

In our examples of preferences for political parties, the “expected” counts (assuming no preferences in
the population) are 33/3 = 11 for each of the three groups. Once we know the counts for two of the three
groups, the count for the third group is fixed: that is, given the sample size, only two counts can vary! In
statistical terms, the number of DoF is two.

The test starts from a null hypothesis. For the first question, our null hypothesis would be that the
proportions in the sample are 1/3 (=33%) for each of the parties. If the sample outcome is unlikely to occur
under the null hypothesis (p<0.05; the probability is lower than 5%), then we reject the null hypothesis in
favor of the alternative hypothesis that the Labor Party is now on top.

Doing the calculations manually based on the data in figure 11.1, would not be that hard. But we don’t
want to do it manually. We can use functions in Excel.

H ©- = chapter11

File Home Insert  Page layout Formulas Data  Review View Developer Help ,O Tell me what you want

E17 - f

A B C D E F G H I J

1 Actual Hypothesis 1 Hypothesis 2 o E O-E (0-E)*  (0-E)/E
2 10 11 0.4 13.2 10 11 1 1 0.090909
3 14 11 0.4 13.2 14 11 3 9 0.818182
4 9 11 0.2 6.6 9 11 2 4 0.363636
5 33 33 33 1.272727
6

7 | Probability

8

9 | Chi-square

Figure 11.2: Data for the Chi-square test (chapterll_example.xlsx)

In figure 11.2, we have entered the data in columns A (observed) and columns B and D (expected). For
hypothesis 2 our expectancies are formulated in proportions (in column C), so we compute the expected
counts by multiplying the sample size by these proportions. For the sake of illustration, we have computed
the chi-square, in columns F to J, step-by-step. The chi-square statistic (1.2727, with DoF=2) can be looked
up in chi-square tables; but luckily, Excel has a function to do the job for us.

In cell A7, we have used the CHISQ.TEST() function in Excel, to compute the probability of our sample
outcome (in column A), given the expected values in column B. In cell D7, we have done the same for
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comparing the sample outcome to the previous election. The probabilities are well beyond 5%, and
therefore we accept the null hypotheses in both cases.

In cells A9 and D9, we have used the CHISQ.TEST() function to calculate the chi-square statistic; note that
we have to add the DoF (2) as a second argument in this function. The function returns the value of chi-
square, associated with the cumulative probability that the chi-square is smaller than or equal to that
value. The probability returned by the CHISQ.TEST() function, however, is the probability of chi-square
exceeding that value. Therefore, in the CHISQ.TEST() function, we have to use 1 minus the probability in
cells B7 and D7, to get the chi-square!

To summarize our test of hypothesis 1:

= Probability of sampling outcome is 52.92%, this is the probability of the chi-square as high (or higher)
than the chi-square in this case.

= Since the chi-square is computed behind the scenes, we have to retrieve it!

= Probability of chi-square being less or equal than the chi-square, is 1- 52.92% = 47.08%.

= The chi-square associated with a probability of 47.08%, is 1.2727.

= Advanced, or extra: the critical value of chi-square (a=0.05; DoF=2) is 5.99 (see 11.4). Since 1.2727 <
5.99, we accept the null hypothesis of no difference; the sampling outcome is not unlikely to occur,
under the assumption of no relationship between the variables.

The outcome shows the chi-square statistic; a value of 1.2727 is not very unlikely (p=0.53) under the null
hypothesis of equal probabilities in the population, and therefore we don’t find support for our alternative
hypothesis. We report that based on our data, we find no evidence to support our alternative hypothesis
(Chi-square = 1.27 (2); p=0.53).

11.3 Testing Relationships Between Two Nominal Variables

For the example of Landers (page 304) we first read in the data from JASP file.

Gum Preference

OBSERVED Chew w/Flavour =~ Competitor #1 Competitor #2 Total
Male 3 1 3 17
Gender
Female 7 3 6 16
Total 10 14 9 33

Figure 11.3 Data for the Chi-square test with two variables

It doesn’t make a lot of difference which of the variables (gender or male preference) appears in the rows
and which in the columns, but — as different from Landers’ figure shown above - we would have a slight
preference to put gender in the columns. After reading in the data in chapterll.csv we use the
<Frequencies><Contingency Tables> to produce the table along with the chi-square test.
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Rows
> &> gum_pref
Columns
> &> gender
Counts
Layers
[

b | Statistics
b | Cells

» | Options

Results

Contingency Tables

Contingency Tables

gender

gum_prel  Female  Male

Total

Competitor #1 3 "
Competitor #2 6 3
Taste With Flavour 7 3

Total 16 17

Chi-Sguared Tests

Value df

X3 7148 2
N 33

Figure 11.4 Contingency Table with Chi-square Test

We can opt for more information in the cells of the table.

In the figure below, we have added the expected counts the cells. It is easy to compute the expected
counts yourself. For example, since we have 16 female persons in our sample, and 14 persons prefer
competitor #1, we would expect (under the null hypothesis of no relationship between gender and
preference) (16/33) * (14/33) * 33 = 6.788 in this cell. This is equivalent to assuming that the proportion
of female persons preferring competitor #1 is the same as the proportion of any person competitor #1; it
is also equivalent to assuming that the gender distribution of persons preferring competitor #1, is the same

as the overall gender distribution.

For easy interpretation, we have also added column percentages. From the results we see that overall,
42% of the sample prefers competitor #1. However, the percentages vary between female (19%) and male

(65%) respondents.
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Descriptives T-Tests ANOVA  Regression  Freguencies Factor
14 & gum_pret ~
Results
Ellurs Contingency Tables
> &> gender
Contingency Tables
gender
Counts gum_pref Female Wale Total
Competitor #1 Count 3.000 11.000 14.000
Expected count 6788 7212 14000
Layers %uwithincolumn  18750%  64706%  42.424%
> Competitor #2 Count 6.000 3.000 9.000
Expected count 4.364 4636 9.000
%withincolumn  37500%  17647%  27.273%
Taste With Flavour  Count 7.000 3.000 10.000
Expected count 4.843 5.152 10.000
% within column 43.750 % 17.647 % 30.303 %
¥ | Statistics Total Count 16.000 17.000 33.000
Expected count 16.000 17.000 33.000
e [ Log odds ratio (2x2 only) %within column~ 100.000%  100.000%  100.000%
[] %? continuity correction Confidence interval 95
[ Likelihood ratio [ Vovk-Sellke maximum p-ratio Chi-Squared Tests
Value o P
Nominal Ordinal e 7148 2 0.028
. _ N 33
[ contingency coefficient [ Gamma
Phi and Cramer's V. [ Kendall's tau-b
Nominal
v | Cells Value
Counts Phi-coefiicient Nal=
Cramer's V 0.465
Observed = Value could not be calculated
- At least ane row of column
Expected contains al zeros
Percentages
[ Row
Column
[ Total

Figure 11.5 Contingency Table with Additional Information in Cells

The difference between preferences of male and female respondents is significant (Chi-squared=7.15 (2);
p<5%). The number in brackets (2), is the number of degrees of freedom, which is equal to (number of
rows minus 1) times (number of columns minus 1). In a 3-by-2 table like we have here, we have 2*¥1=2
degrees of freedom.

11.4 Additional Statistics

Cramer’s V, a measure of effect size that takes a value between 0 and +1, is displayed optionally. Cramer’s
V is a measure of effect size, with the same rules as the correlation coefficient R. Values of 0.1; 0.3; and
0.5 are interpreted as weak, moderate and strong effects. Here, the effect size is medium to strong.

If you want to report the critical value of chi-square (as in Landers, page 307) then again you do not need
to look it up in a table. We can use the Excel function CHISQ.INV(Probability, DoF). Here, the probability
to use is 0.95 (when testing at a=0.05), and the DoF is 2.

=CHISQ.INV(0.95,2) = 5.99

Since our test-statistic (7.15) is higher than the critical value (5.99), we reject the null hypothesis.
Remember that a is the probability that of falsely rejecting the null hypothesis. We want to keep that error
as small as possible. In many disciplines, researchers use an a of 0.05, but it all depends on how serious
making this “Type |” error is! In medical studies, it is conceivable that researchers are stricter, when it
comes to, say, testing a new medicine.
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11.5 Data Skill Challenge
Data Skill Challenge 1

Maria decides to run a focus group, comparing four Chew-with-Flavor’s gums to determine which one is
preferred. Gums flavors A; B; C; and D are picked 12; 7; 8 and 21 times, respectively.

Complete the full hypothesis testing process, given this data.
The answers to this challenge are in worksheet DSC1 of chapterll_example.xlsx.
Data Skill Challenge 3

Chaitra decides to track the number of accidents at the 12 manufacturing plants she manages. Right
now, safety training is conducted by two separate units: one trains the day shift while the other one
trains the night shift. Both are generally effective but she is worried that that the night-shift trainers
aren’t getting out to some of the plants further from the home office.

(a) Complete the full hypothesis testing process given the observed numbers of accidents recorded
in the table below, to see if accident counts by shift and plant are related.

(b) Compute the chi-square statistic
(c) Compute the critical value for the chi-square statistic
(d) Compute Cramer’s V

(e) What is your main conclusion?

Plant Day Night
1 3 4
2 5 7
3 1 0
4 3 1
5 0 1
6 6 7
7 2 0
8 7 6
9 2 9

10 0 13
11 4 6
12 3 12

Figure 11.6: Data for Data Skill Challenge
This is a bit of a challenge.

A solution is to use Excel, and to compute the expected counts. After that, the procedure follows our
earlier example.

A solution (see below) can be found in worksheet DSC3, in chapterl1l_example.xlsx. The expected counts
can be computed. For example, for Plant 1 we would expect values of 2.47 and 4.53 for accidents during
day and night shifts. Since 7 accidents occurred in this plant, and overall 36 and 66 (in total 102) accidents
took place during day and night shifts, we would expect 7*(36/102) and 7*(66/102) to take place during
these shifts in plant 1. The observed number (3) is somewhat higher than expected (2.47) — but then again,
the observed number has to be an integer (2 or 3).
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In the Excel-sheet, we have added Cramer’s V. The formula for Cramer’s V is:

Chi Square
nx*x(k—1)

Cramer'sV =

In the formula, the chi-square is the value computed using the CHISQ.INV() function (21.96); n is the
sample size (102); and k is the minimum of the number of rows and the number of columns. With 12 rows
and 2 columns, the minimum is 2. Cramer’s V is 0.46, which signifies a medium to strong effect.

For obtaining the chi-square value, remember that the probability (from CHISQ.TEST()) is the probability
of a chi-square that high, or higher. Here, the probability of obtaining the observed results under the null
hypothesis is as small as 2.47%. To display the chi-square, we use the CHISQ.INV() function, with — as its
first argument - the probability of 1 —0.0247 = .09753 (97.53%). That is, 97.53% of the distribution has a
value of up to 21.96 (and 2.47% a value higher than 21.96).

(=

File Home Insert Pagelayout Formulas Data Review View  Developer
116 - Jr

A B (o D E F G H

1 Observed Counts (O) Expected Counts Own Computations
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Figure 11.7: Solution for Data Skill Challenge 3

)
5

The significant chi-square statistic indicates that indeed there is a relationship (an association, we would
call it) between plants, and day and night shift accidents. The strength of the association is reflected by a
Cramer’s V of .46. Like for correlation, Cramer’s V is interpreted as small (.10), medium (.30) or large (.50)
effects. In our case, the effect size of .46 is medium to large.




Data Skill Challenge: Extra

From a sample of 100 respondents, we found the following data on men and women wearing glasses.

Wearing glasses

I S 7 N
10 30

Glasses 20

No Glasses 30 40 70

Total 50 50 100
N

Is there a relationship?

Is it significant?

Figure 11.8: Gender and Wearing Glasses

(a) Read the data into Excel
(b) Compute the chi-square statistic
(c) Compute the critical value for the chi-square statistic

(d) Advanced: compute Cramer’s V

Answer to Extra Data Skills Challenge
(See chapter11l_example; worksheet EXTRA)
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Apart from the solution directly applied to the crosstabulation, you can generate a database of 100 records
and two columns (variables), as in chapterll_example; worksheet EXTRA, and stored in
chapter1l_EXTRA.csv.

Answer to Extra Data Skills Challenge
(chapterl1l_EXTRA.csv)
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12 Correlation and Regression

Files needed:
chapterl2.csv
chapter12_dsc.csv

12.1 Correlation

In the previous chapter we analyzed the relationship between nominal variables (groups, like male/female;
or cities). In this chapter we discuss the relationship between two variables measured at an interval or
ratio scale (e.g. cost; profit; Likert scales). Since the two variables have meaningful values we can use a
scattergram to depict our cases (or respondents).

In the example of Landers, we have data on the costs spent on projects, and the profitability of the project.

(hapier12
m Ccmmun.‘ +

ot - | i i Lx- S |
Descriptives

T-Tests ANOVA  Regression  Frequencies Factor

0 cost | @ perc_profit

Figure 12.1: Data for Chapter 12

We make a scattergram, and fit a regression line.

Self-test questions
What you prefer on the vertical axis: cost or profit? Why?

[It is common to have the explanatory variable on the horizontal (x) axis, and the variable to be explained
on the vertical (y) axis!]

Figure out how to switch the axes in JASP!
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T T 1
0 100 200 300 400 500 600
cost

Figure 12.1: Scattergram of the data
The “regression line” slopes upward, indicating a positive correlation between the variables. Some points

are quite far from the line-of-best-fit, indicating that the correlation is not perfect. Our statistical interest
would be to know if the correlation is significantly different from zero.

(hameHZ‘ — m]
Common | =+
T, T +
Dl - | 22 [22- b2 - Sa - | g
Descriptives T-Tests ANOVA  Regression Frequencies Factor
ob cost 0K
& perc_profit Correlation Matrix

Pearson Correlations

Pearson's r P Lower 95% CI___ Upper 95% CI

cost - perc_profit 0611% 0.035 0.057 0.877
Tp=.05, % p=.01, 7 p<.001

Correlation Coefficients Correlation Plot

Display pairwise table

Pearson Report significance
Flag significant correlations 80
[ spearman Confidence intervals
70
Interval |95 %
[ Kendall's tau-b merva -
[ Vovk-Sellke maximum p-ratio 5 60
2
Hypothesis Plots 23
g 50
@ Correlated Correlation matrix
O Correlated positively [] Densities for variables 40
O Correlated negatively [] statistics

r T T T T 1
0 100 200 300 400 500 600
cost

Figure 12.2: Scattergram of the data

The correlation coefficient is 0.611. Since our sample is small, the confidence interval is quite wide, ranging
from .057 to .877. In repeated sampling, 95% of the correlations found would be in this interval.

Since a correlation of zero is well outside of this range, we can conclude that the correlation is significantly
different from zero.

In a formal hypothesis test, the probability of finding a correlation of 0.611 in a sample of this size under
the null hypothesis that there is no correlation in the population from which this sample is drawn, is 3.5%
(0.035). When testing at 95% confidence (and hence a = 0.05), we conclude that the correlation between
the two variables significantly different from zero. The correlation coefficient itself is a measure of effect
size. The effect here is strong.
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As Landers explains, it’s good to compute the coefficient of determination which is the square of the
correlation coefficient. The reason is that the coefficient of determination has a clear interpretation: it
indicates how much of the variance the two variables have in common. Here, it’s 0.612 = 0.37 (or 37%).

12.2 Simple Linear Regression

In regression analysis we make a distinction between the dependent variable, and independent
(explanatory) variables. In simple regression analysis we have one dependent and one independent
variable, but the idea can be expanded to the situation of one dependent and two or more independent

variables.

Regression analysis is quite flexible: we can use categorical variables as independent variables (using
dummy variables, or factor variables); we can estimate relationships that are nonlinear; in the
“family” of regression techniques we can also estimate models in which the dependent variable is a
grouping variable. These extensions are beyond the scope of this module.

We will stick to the fundamentals of regression analysis as discussed in Landers. Regression analysis in
JASP is found under the <Regression> tab. You can click one variable to the dependent variable box, and
one or more (non-categorical) variables to the Covariates box.

Bl chaptert2+ -
common | +
T 7 . 2
Ot - | B2 [ P2 Sz |
Descriptives TTests ANOVA Regression Frequencies Factor
~ a7
Dependent Variable oK °
» & perc_profit 40 o ®
Method | Enter e 30
Covariates r T T T T 1
0 100 200 300 400 500 600
> &b cost
cost
Linear Regression
Model Summary
WLS Weights (optianal Wodel R = Adusted R°___RMSE
r 1 05611 0373 031 9.570
» | Model
ANOVA
SR Wods! Sum of Squares o Wiean Square F 3
Regression Coefficients 1 Regression 580058 1 580056 5954 0035
Residual 974.102 10 97.419
Estimates Model fit Total 1554250 1

[] Confidence intervals
nterval 95
[ Covariance matrix

Residuals

e s oo

The vital statistics are:

[ R squared change

[ Descriptives Coefficients

[ Part and partial correlations ode! Unstandardized  Standard Error

N 1 (Intercept) 39.369
[] Collinearity diagnostics ot 55

7293
0.027

0611

5398
2440

<.001
0.035

v

Figure 12.3: Regression Analysis in JASP

= The coefficients. The intercept is of less relevance here but “locates” the graph. The coefficient for cost
indicates how much the profit percentage increases with a unit increase in cost.

» The R?gives us the coefficient of determination (same as the multiple R-squared as we saw earlier on).
Again, we conclude that 37% of the variation in profit is explained by variations in cost.

= The t-statistic tells us that the coefficient for cost is significant at the 5% level (t=2.44; p=3.5%).

= The F-statistic tells us that the overall model is significant; since we have only one independent variable
in the model, we knew that already from the t-statistic.

It is not a coincidence that the p-value for the F-statistic is identical to the t-statistic for the coefficient; the
F statistic here is the square of the t-statistic. In case of one independent variable it is redundant to report
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both! Only for “multiple” regression with two or more independent variables, does the F-statistic add
information.

Now it should be easy to follow Landers’ discussion on page 339 and 340, on predicting values from a
regression line.

Once the regression model has been estimated you can compute predicted values.
The regression function is:
Profit = 39.369 + 0.066 * Cost
The predicted profit for a project costing 300, is:
Profit = 39.369 + 0.066 * 300 = 59.169

12.3 Data Skill Challenge

Shane works at an ice cream store. He notices that on every warm day his boss makes sure to have extra
supplies in anticipation of having a lot of customers. Shane decided to test whether he can predict the
number of customers based on the temperature. If so, how many customers should he expect if the
temperature is 38°C? He tracks the temperature and the number of customers for one week. His data
are provided below.

(a) Compute the correlation between the number of customers and temperature
(b) Make a scattergram with number of customers (on the vertical axis) and temperature
(c) Estimate the regression line; is the coefficient for temperature significant?

(d)  Predict the number of customers if the temperature is 38°C

Temperature (degrees °C) # of customers
22 28
25 24
29 32
28 33
35 52
32 47
30 45

Figure 12.4: Data for Data Skill Challenge (chaoter12_dsc.csv)
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Correlation Plot
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Dependent Variable oK 20
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Linear Regression

Model Summary
WLS Weights (optional) Wodel R R? Adjusted RF  RMSE

1 0.900 0310 0.771 5.087

Model
ANOVA

Statistics Model Sum of Squares of Wean Square F [

Options 1 Regression 550053 1 550.053 21258 0.006
Resicual 120376 5 25875
Total 679.420 6

viivl[v|l¥

Assumption Checks

Coefficients

Model Standard Emor__ Standardized t [

1 (Intercept) -26512 13970 -1.808 0116
Temp 2222 0.482 0.900 4611 0.006

From the output we learn that 81% of the variation in the number of customers is explained by the model.
The scattergram indicates that, as expected, ice-cream sales go up with temperature.

The coefficient for Temp is significantly different from zero as indicated by the high t-value of 4.611. A
value that high has a probability of 0.006 (or 0.6%) which is well below the 5% benchmark.

The F-statistic indicates that the regression model as a whole is significant, but with one independent
variable the t-value for the one independent variable and the F-statistic are equivalent. You can see that
from the identical probabilities; the F-statistic here is the square of the t-statistic. Only in regression
models with two or more independent variables the F-statistic would add information.

Since the model seems to make sense we can now write the function for the regression line:
Number of customers = —26.512 + 2.222 * Temperature

The “intercept” of -26.512 is the number of customers when the temperature drops to zero. This obviously
doesn’t make sense. A negative number implies that customers are sending their back ice-creams to the
store (luckily, they won’t melt at O degrees). The regression line is based on observations in a small range
of temperatures; in our sample the temperature is in the 22 to 35°C range and we have to be very careful
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in making predictions for temperatures outside of that range. Temperatures of 0°C are unlikely to occur
anyway, in summer — depending on where you’re living of course. In general, the intercept is in most
regression models not that relevant; it just “locates” the regression line. The main interest is in the
coefficient for Temp. It is estimated that we have 2.222 extra customers with every 1 degree increase in

temperature.

The predicted number of customers at a 38°C temperature then is: -26.512 + 38*2.222 =57.924 (57 or 58,
if we don’t allow broken persons to buy our product).
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Concluding Remarks

We hope that this manual has taught you the fundamentals of business statistics, and how to use Excel
and JASP to perform basic analyses. The book by Landers or any other textbook on basic statistics, and this
manual serve as a primer in basic statistics, and enable you to deal with the majority of statistical
challenges that you will encounter in your study or profession.

For more advanced quantitative academic research, at masters or doctoral level, you might have to dig
deeper. To this end, we have developed many modules to learn about other techniques, with regression
analysis as discussed in chapter 12 of this manual as a starting point. For advanced statistical analysis we
recommend using STATA or R.

My ex-girlfriend thinks I'm
mean and my current one
thinks I'm average...

Maybe you've set your
bar too high?
0
f) / =
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Assignment

1.

Here are the sales data for the branch offices of a sales organization
= Branch 1: West, 20 units sold, € 34,000

= Branch 2: West, 40 units sold, € 50,000

= Branch 3: East, 16 units sold, € 35,000

= Branch 4: East, 93 units sold, € 85,000

Place the scores in a dataset (preferably Excel), in rows and columns as appropriate. Don’t forget to
add a column for the branch number. Describe the data, after reading the data into JASP.

Read the data of Assignment_2.csv in JASP. The dataset contains data on orders by representatives, in
several regions of the country.

Make a plan-of-analysis for this dataset, and report the results (to the sales manager). At a minimum,
address the following issues: overall sales; sales by region and representative; distribution of order
sizes; and unit price per item.

. Given the dataset: 2,3,3,1,4,2,3

a. Convert each score into a Z-score
b. What percentage of cases would you expect to fall below 3?
c. What score would be at the 40™" percentile?

. Your organization has conducted a consumer satisfaction survey, finding these overall satisfaction

scores: 1,5,3,2,4,1,1,2,4,4,3,5,2,3,5,2,3,4,4,3,5,4

Describe the information, and find the confidence interval for the mean.

. The manager of Petra, an employee at a call center, has asked her to determine whether the average

number of complaints received by the workers at their branch, is different from the average number
of complaints for the company overall. The company receives 24 complaints per day with a standard
deviation of 5.25.

The sample data for Petra’s branch, for 5 days, are 23; 28; 34; 26 and 32.

Conduct the complete hypothesis testing process with this dataset.

. A regional manager implements a policy change for stores in his region to begin greeting customers

whenever they are standing within a 3-meter distance in a store. He compares employee satisfaction
for five employees, from pre-change to post-change. Employee satisfaction is measured on a 1-5 scale
(very dissatisfied to very satisfied). He expects that his stores will have different ratings before and after
the change.

Mean employee satisfaction of five sampled employees (A-E) are: 4, 4, 3, 5, 4 (before) and 3,2, 1, 2,2
(after).

Conduct the complete hypothesis testing process with this dataset.

Lionel is a waiter at a local diner. He notices that he earns less tips when he works the lunch shift
compared with the breakfast or dinner shift. He is curious whether customers tip differently depending
on the time of the day, and decides to test this by comparing the average amount tipped during each
shift for one week.
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The data are in the table below.

Breakfast Lunch Dinner
3 3 5
2 1 4
3 2 5
6 5 6
1 4 8
4 4 5
5 2 2

Conduct the complete hypothesis testing process with this dataset.

. Sebastian manages the food services division at an amusement park. He wants to know of there is an
interaction between the type of food sold and the color of the food cart. His cart currently sells hot
dogs, ice cream and popcorn. He paints half of his carts blue, and the other half red. He records the
number of sales for each food cart.

Hot Dogs Ice Cream Popcorn
Red 10 8 15
Blue 12 22 19

Conduct the complete hypothesis testing process with this dataset.

. Klaus is an office manager at a data entry company. He is interested in finding ways to improve
employee productivity. He wonders if the number of hours worked is related to productivity. To test
this, he installs software on each of his employees’ computers that measures how many cells of data
they enter and how long they work. The data are provided below.

# of Minutes Worked # of Cells Entered ‘
240 500
390 18
495 592
270 340
345 689
525 703
330 440
435 478

Conduct the complete hypothesis testing process with this dataset.

10.Design a quantitative study on your own. Think of an interesting research question, and collect relevant

data. Formulate your hypothesis, and test the hypothesis using the data that you have collected!
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